期刊文献+
共找到112篇文章
< 1 2 6 >
每页显示 20 50 100
基于VMD-GA-BiLSTM的月降水量预测方法 被引量:1
1
作者 于霞 宋杰 +2 位作者 段勇 彭曦霆 李冰洁 《沈阳大学学报(自然科学版)》 CAS 2024年第4期297-305,共9页
利用辽宁省气象局提供的地面观测降水资料,构建了具有多元时间特征的降水数据,采用变分模态分解方法(variational mode decomposition,VMD)组合遗传算法(genetic algorithm,GA)对双向长短时记忆神经网络(bidirectional long short-term ... 利用辽宁省气象局提供的地面观测降水资料,构建了具有多元时间特征的降水数据,采用变分模态分解方法(variational mode decomposition,VMD)组合遗传算法(genetic algorithm,GA)对双向长短时记忆神经网络(bidirectional long short-term memory,BiLSTM)进行优化,建立基于VMD-GA-BiLSTM的月降水量预测模型,并与BiLSTM、VMD-BiLSTM和GA-BiLSTM进行实验对比,应用均方根误差(root mean square error,RMSE)、平均绝对误差(mean absolute error,MAE)和R 2决定系数作为模型评价指标。实验结果表明:VMD-GA-BiLSTM模型的R 2决定系数达到0.98,RMSE和MAE表现更低,验证了VMD-GA-BiLSTM模型在时间序列预测方面的优势。 展开更多
关键词 BiLSTM vmd 遗传算法 月降水量 时序特征
下载PDF
基于VMD-IMPA-SVM的超短期风电功率预测 被引量:2
2
作者 刘金朋 邓嘉明 +2 位作者 高鹏宇 刘胡诗涵 孙思源 《智慧电力》 北大核心 2024年第7期24-31,79,共9页
针对风力发电强波动性带来的预测精度不高问题,构建一种基于变模态分解(VMD)、灰狼优化算法(GWO)、海洋捕食者算法(MPA)和支持向量机(SVM)的组合预测模型。采用GWO对VMD的模态数和惩罚因子进行寻优,将原始功率序列分解为子序列进行降噪... 针对风力发电强波动性带来的预测精度不高问题,构建一种基于变模态分解(VMD)、灰狼优化算法(GWO)、海洋捕食者算法(MPA)和支持向量机(SVM)的组合预测模型。采用GWO对VMD的模态数和惩罚因子进行寻优,将原始功率序列分解为子序列进行降噪处理;运用对立学习和柯西变异等方法改进MPA的种群生成与变异方式,得到改进MPA(IMPA)并优化SVM中的核参数与惩罚参数,进而构建VMD-IMPA-SVM组合预测模型,对各子序列进行预测并叠加得到最终预测值。实际算例分析表明,所提组合预测模型具有较高的预测精度,同时具备强鲁棒性。 展开更多
关键词 风电功率预测 变模态分解 海洋捕食者算法 支持向量机 灰狼优化算法
下载PDF
基于VMD和时空网络变分自编码器的负荷聚类
3
作者 陆绮荣 王泽鑫 +1 位作者 叶颖雅 邹健 《科学技术与工程》 北大核心 2024年第14期5831-5838,共8页
为了解决用户用电负荷曲线数据维度高、特征提取困难以及序列存在信号模态混叠的问题,提出了使用变分模态分解(variational modal decomposition,VMD)和改进基于时空网络的变分自编码器(variational auto-encoder,VAE)对电力负荷曲线进... 为了解决用户用电负荷曲线数据维度高、特征提取困难以及序列存在信号模态混叠的问题,提出了使用变分模态分解(variational modal decomposition,VMD)和改进基于时空网络的变分自编码器(variational auto-encoder,VAE)对电力负荷曲线进行特征提取。通过模态分解得到信号的固有模态,对模态重构得到时序特征较明显的序列信号。再通过长短期记忆网络(long short-term memory network,LSTM)和卷积网络(convolutional neural network,CNN)组成的时空变分自编码器进行潜在特征提取,并构建网络分类器来联合损失优化自编码器模型。最后使用Minibatchkmeans算法聚类并计算聚类中心。使用UCI数据集中葡萄牙居民用电量作为实验数据,通过实验结果表明经模态分解后通过降维再聚类的算法在戴维斯丁堡指数(Davies-Bouldin index,DBI)和轮廓系数(silhouette coefficient,SC)上表现出较好效果。 展开更多
关键词 负荷聚类 变分模态分解 长短期记忆网络 卷积神经网络 变分自编码器
下载PDF
基于参数优化VMD-小波阈值的轴承振动信号降噪方法 被引量:2
4
作者 闫海鹏 郝新宇 秦志英 《机电工程》 CAS 北大核心 2024年第2期245-252,共8页
为了解决复杂工况下滚动轴承振动信号存在随机噪声的问题,提出了一种基于参数优化变分模态分解(VMD)-小波阈值的滚动轴承降噪方法。首先,利用以包络熵为适应度函数的天鹰算法对变分模态分解算法的模态分解数K和惩罚因子α进行了自适应选... 为了解决复杂工况下滚动轴承振动信号存在随机噪声的问题,提出了一种基于参数优化变分模态分解(VMD)-小波阈值的滚动轴承降噪方法。首先,利用以包络熵为适应度函数的天鹰算法对变分模态分解算法的模态分解数K和惩罚因子α进行了自适应选择,代入VMD分解中,得到若干本征模态函数(IMFs);然后,根据峭度-相关系数将IMF分量划分为纯净分量和含噪分量,对含噪分量进行了小波阈值降噪处理;最后,对处理后的分量进行了重构,并用重构信号进行了包络谱分析,实现了滚动轴承的信号降噪目的,并利用仿真信号和美国凯斯西储大学公开的轴承数据集对上述降噪方法的有效性进行了验证。研究结果表明:基于参数优化VMD-小波阈值的降噪方法减少了滚动轴承运行状态下的随机噪声,相对小波阈值降噪方法,所得仿真信号信噪比提升53%,均方误差降低13%;在故障特征频率为162 Hz时,所得实验降噪信号包络谱的前6倍频谱峰值更为明显,且受随机噪声影响较小。该研究方法在滚动轴承等旋转机械信号降噪方面具有一定的参考价值。 展开更多
关键词 滚动轴承 故障诊断 变分模态分解 本征模态函数 小波阈值降噪 天鹰算法 峭度-相关系数
下载PDF
VMD结合小波包信息熵和GJO-SVM的电机轴承故障诊断 被引量:2
5
作者 纪京生 周莉 马向阳 《现代制造工程》 CSCD 北大核心 2024年第2期128-136,共9页
针对电机滚动轴承故障特征难以提取从而导致诊断准确率低的问题,提出了一种基于变分模态分解(Variational Modal Decomposition,VMD)结合小波包信息熵(Wavelet Packet Information Entropy,WPIE)的特征提取方法,并采用金豺优化(Golden J... 针对电机滚动轴承故障特征难以提取从而导致诊断准确率低的问题,提出了一种基于变分模态分解(Variational Modal Decomposition,VMD)结合小波包信息熵(Wavelet Packet Information Entropy,WPIE)的特征提取方法,并采用金豺优化(Golden Jackal Optimization,GJO)算法优化后的支持向量机(Support Vector Machine,SVM)进行电机滚动轴承的故障诊断。首先,利用VMD将采集到的信号进行分解,依据局部极小包络熵筛选出最优本征模态(Intrinsic Mode Function,IMF)分量;其次,利用小波包将最优IMF分量再分解,并提取信息熵作为特征向量矩阵;最后,采用GJO算法对支持向量机中的惩罚参数和核参数进行寻优选择,建立GJO-SVM故障诊断模型,将特征向量矩阵输入金豺算法优化支持向量机(GJO-SVM)故障诊断模型中进行故障诊断。将VMD结合小波包信息熵特征提取与VMD结合近似熵特征提取进行对比试验,试验结果表明,VMD结合小波包信息熵特征提取精度提高了2.5%,其特征提取更加优越;将金豺算法优化支持向量机(GJO-SVM)与粒子群优化(Porticle Swarm OPtimization,PSO)算法支持向量机(PSO-SVM)、果蝇优化算法(Fruit fly Optimation Algorithm,FOA)支持向量机(FOA-SVM)进行对比试验,试验结果表明,GJO-SVM其平均准确率达到99.16%,较PSO-SVM、FOA-SVM分别提高了2.5%、3.61%。金豺算法优化支持向量机(GJO-SVM)可以更加有效提取并诊断滚动轴承故障。 展开更多
关键词 变分模态分解 小波包信息熵 金豺优化算法 支持向量机 轴承故障诊断
下载PDF
基于改进PSO-VMD-MCKD的滚动轴承故障诊断 被引量:1
6
作者 宿磊 刘智 +2 位作者 顾杰斐 李可 薛志钢 《噪声与振动控制》 CSCD 北大核心 2024年第4期118-124,共7页
针对滚动轴承信号在强噪声背景下故障特征提取困难的问题,提出一种变分模态分解(Variational Modal Decomposition,VMD)和最大相关峭度解卷积(Maximum Correlated Kurtosis Deconvolution,MCKD)相结合的故障诊断方法。首先基于VMD方法... 针对滚动轴承信号在强噪声背景下故障特征提取困难的问题,提出一种变分模态分解(Variational Modal Decomposition,VMD)和最大相关峭度解卷积(Maximum Correlated Kurtosis Deconvolution,MCKD)相结合的故障诊断方法。首先基于VMD方法选取故障信号的最优模态分量,然后采用MCKD算法增强最优分量信号中的冲击成分,最后通过包络谱分析提取滚动轴承的故障频率。利用粒子群优化算法(Particle Swarm Optimization,PSO)对VMD算法中的参数α和K以及MCKD算法中的参数L和M进行寻优,并对PSO算法中惯性因子和学习因子的更新方法加以改进,以提高参数寻优过程的收敛速度。仿真分析和试验结果表明,所提出的诊断方法可以有效提取被强噪声淹没的滚动轴承故障特征。 展开更多
关键词 故障诊断 滚动轴承 变分模态分解 最大相关峭度解卷积 粒子群优化
下载PDF
基于相关性检验的VMD-LSTM耦合模型月径流模拟研究
7
作者 刘声洪 SOOMRO Shan-E-Hyder +3 位作者 李颖 李英海 程雄 杨少康 《水资源与水工程学报》 CSCD 北大核心 2024年第2期71-82,共12页
近年来,极端强降雨和干旱事件频发,流域水文过程的不确定性变化加剧,使得流域中长期径流预测的难度增加。为提升LSTM(长短期记忆神经网络)模型对径流时序变化的捕捉及拟合能力,以博阳河流域为研究区域,选取月降雨、蒸发及流量数据,利用V... 近年来,极端强降雨和干旱事件频发,流域水文过程的不确定性变化加剧,使得流域中长期径流预测的难度增加。为提升LSTM(长短期记忆神经网络)模型对径流时序变化的捕捉及拟合能力,以博阳河流域为研究区域,选取月降雨、蒸发及流量数据,利用VMD(变分模态分解)和相关性检验,排除无关频率分量对LSTM模型规律学习的干扰,以达到模型输入优选的目的;此外,还考虑了VMD与LSTM模型的不同耦合方式对模型精度和稳定性的影响,最终优选出二者兼具的VMD-LSTM月径流耦合模式。结果表明:VMD-LSTM耦合模型可显著提升模拟精度,但在模型稳定性方面有所欠缺;而基于相关性检验的VMD-LSTM耦合模型不仅能够进一步提高模型精度,并且在模型的稳定性方面也有所改进。在基于相关性检验的VMD-LSTM耦合模型的不同耦合方式对比中,对输入、输出均进行VMD分解且对输入变量进行优选的D_(1)耦合方案的模拟效果最好,其60次模拟计算的NSE均为0.98以上且稳定性极佳;另外,在分析方案D_(1)的可解释性时发现历史径流对于LSTM模型的影响要比降雨和蒸发大。该研究结论可为流域水资源管理提供精准可信的中长期径流模拟成果。 展开更多
关键词 相关性检验 变分模态分解 长短期记忆神经网络 径流模拟 博阳河流域
下载PDF
CEEMD-VMD与参数优化SVM结合的托辊轴承故障诊断 被引量:3
8
作者 贺志军 李军霞 +1 位作者 刘少伟 秦志祥 《机械科学与技术》 CSCD 北大核心 2024年第3期402-408,共7页
针对托辊轴承工作环境复杂、提取故障特征困难等问题,提出一种基于互补集合经验模态分解(Complementary ensemble empirical mode decomposition, CEEMD)和变分模态分解(Variational modal decomposition, VMD)相结合的降噪方法。首先,... 针对托辊轴承工作环境复杂、提取故障特征困难等问题,提出一种基于互补集合经验模态分解(Complementary ensemble empirical mode decomposition, CEEMD)和变分模态分解(Variational modal decomposition, VMD)相结合的降噪方法。首先,利用CEEMD将采集到的信号进行分解,依据相关系数和峭度筛选分量并进行重构,生成新的信号;然后,利用VMD将新的信号进行再分解,并基于包络熵和包络谱峭度组合的复合指标优选本征模态分量(Intrinsic mode functions, IMF);最后,提取相应的特征输入樽海鞘群优化支持向量机(Salp swarm optimization support vector machine, SSO-SVM)模型完成故障诊断。实验结果表明:对于正常轴承、轴承内圈故障、轴承外圈故障三种情况,诊断准确率达97.78%。与单一降噪方法相比,该方法可以有效提高故障信号的信噪比,降噪效果明显。 展开更多
关键词 变分模态分解 托辊轴承 樽海鞘群算法 支持向量机 故障诊断
下载PDF
基于改进VMD与BiLSTM的滚动轴承剩余寿命预测模型
9
作者 潘磊 皋军 邵星 《电子设计工程》 2024年第4期27-31,共5页
为提取能表示滚动轴承寿命退化的深层特征,用变分模态分解算法(Variational Model Decomposition,VMD)分解轴承的横向振动信号。为了解决VMD中需要手动选取惩罚因子α及模态分量数目K的问题,用粒子群优化算法(Particle Swarm Optimizati... 为提取能表示滚动轴承寿命退化的深层特征,用变分模态分解算法(Variational Model Decomposition,VMD)分解轴承的横向振动信号。为了解决VMD中需要手动选取惩罚因子α及模态分量数目K的问题,用粒子群优化算法(Particle Swarm Optimization,PSO)对VMD进行了优化,以提取出更能代表寿命变化的特征。在此基础上,将筛选的特征输入到双向长短时记忆(Bi-directional Long Short-Term Memory,BiLSTM)网络中进行剩余使用寿命预测。通过实验并与其他深度模型进行对比,该文提出模型的均方误差等指标均比其他几种模型更低,证明了该文模型在轴承剩余使用寿命预测上的有效性。 展开更多
关键词 滚动轴承 变分模态分解 横向振动信号 粒子群优化算法 双向长短时记忆网络
下载PDF
基于BWO优化VMD联合小波阈值的管道泄漏次声波去噪方法
10
作者 陈元健 黄靖 +3 位作者 孙晓 于柳 罗剑宾 陈培演 《机电工程技术》 2024年第3期54-59,共6页
管道泄漏次声波信号中的干扰噪声影响管道泄漏定位的精准度。提出了一种基于白鲸优化算法(BWO)优化变分模态分解(VMD)联合小波阈值(WT)的管道泄漏次声波去噪方法。针对VMD算法中分解层数K和惩罚因子α的取值对信号分解结果影响较大,利... 管道泄漏次声波信号中的干扰噪声影响管道泄漏定位的精准度。提出了一种基于白鲸优化算法(BWO)优化变分模态分解(VMD)联合小波阈值(WT)的管道泄漏次声波去噪方法。针对VMD算法中分解层数K和惩罚因子α的取值对信号分解结果影响较大,利用白鲸优化算法(BWO)对VMD分解的两关键参数进行寻优,获得最优参数组合[K、α],并利用优化后的参数对次声波信号进行VMD分解,获得一系列本征模函数(IMF)分量。通过计算各IMF分量的相关系数来区分噪声IMF分量和有效IMF分量,引入一种改进的小波阈值函数对有效的IMF分量进行去噪处理,再重构去噪后各有效IMF分量,得到去噪后的管道泄漏次声波信号。通过仿真实验,将所提方法与灰狼优化算法(GWO)优化VMD联合小波阈值和麻雀搜索算法(SSA)优化VMD联合小波阈值两种方法对比,所提方法去噪后信号的信噪比分别提高了1.27%、2.01%,表明所提方法的去噪效果具有一定的优越性,为后续管道泄漏计算定位奠定了良好的基础。 展开更多
关键词 管道泄漏次声波 信号去噪 变分模态分解 白鲸优化算法 小波阈值
下载PDF
基于自适应维纳滤波和2D-VMD的声呐图像去噪算法
11
作者 冯伟 刘光宇 +2 位作者 刘彪 周豹 赵恩铭 《南京信息工程大学学报(自然科学版)》 CAS 北大核心 2024年第1期97-105,共9页
声呐图像易产生对比度低、分辨率低、边缘失真等问题,所以在去除声呐图像噪声时难以将有效信号与噪声准确分离,从而导致去噪后图像对比度降低、边缘轮廓不清晰、细节丢失严重等问题.本文提出一种基于自适应维纳滤波和2D-VMD(二维变分模... 声呐图像易产生对比度低、分辨率低、边缘失真等问题,所以在去除声呐图像噪声时难以将有效信号与噪声准确分离,从而导致去噪后图像对比度降低、边缘轮廓不清晰、细节丢失严重等问题.本文提出一种基于自适应维纳滤波和2D-VMD(二维变分模态分解)的声呐图像去噪算法.首先通过二维变分模态分解对含噪图像进行分解,得到一系列不同中心频率的模态分量,利用相关系数和结构相似度筛选出有效的模态分量,并使用自适应维纳滤波处理有效的模态分量,最后将滤波后的模态分量进行重构,从而去除图像中的噪声.实验结果表明:所提图像去噪算法在相关系数(CC)、结构相似度(SSIM)这两项客观数据上表现最优,峰值信噪比(PSNR)略低于NSST域去噪,综合客观数据与视觉效果,本文所提算法去除噪声后的图像细节和边缘保持能力效果最佳. 展开更多
关键词 图像去噪 二维变分模态分解 自适应维纳滤波 模态分量 声呐图像
下载PDF
VMD-Stacking集成学习的多特征变量短期负荷预测模型 被引量:1
12
作者 王士彬 何鑫 +2 位作者 余成波 张未 陈佳 《兵器装备工程学报》 CAS CSCD 北大核心 2024年第2期218-224,共7页
针对当前短期电力负荷预测结果准确度不够高的问题,提出一种由变分模态分解(variational modal decomposition, VMD)和Stacking集成学习框架组合的多特征变量短期负荷预测模型。在预测前使用VMD算法将负荷数据分解,然后加入对模型重要... 针对当前短期电力负荷预测结果准确度不够高的问题,提出一种由变分模态分解(variational modal decomposition, VMD)和Stacking集成学习框架组合的多特征变量短期负荷预测模型。在预测前使用VMD算法将负荷数据分解,然后加入对模型重要性较高的特征变量,再建立由轻量级梯度提升机(light gradient boosting machine, LightGBM)与极限梯度提升机(extreme gradient boosting, XGBoost)融合的Stacking集成学习预测模型,并比较不同天气情况下对预测模型准确度的影响。经实际算例对比验证表明:多特征的VMD-Stacking集成学习预测模型的误差较小。采用VMD算法分解历史负荷序列,分解后子模态分量的周期性体现了出来,让模型预测波动性较大的负荷时更容易;温度、天气、农历和节假日情况等影响负荷变化的关键因素有被考虑到,模型的准确度得以提高;Stacking集成学习模型对各算法取长补短,泛化能力增强,预测的准确度高于单一模型。 展开更多
关键词 短期电力负荷预测 变分模态分解 Stacking集成学习 多特征变量 轻量级梯度提升机 极限梯度提升机
下载PDF
基于SOA-VMD-ICA的海水泵激励源特征提取方法
13
作者 滕佳篷 武国启 《中国机械工程》 EI CAS CSCD 北大核心 2024年第8期1373-1380,共8页
针对海水泵复杂多源激励特征提取问题,提出了一种海鸥优化算法(SOA)、变分模态分解(VMD)和独立分量分析(ICA)相结合的海水泵激励源特征提取方法。基于单通道测量信号,采用VMD算法与SOA算法选取信号平方包络谱峭度统计量作为适应度函数,... 针对海水泵复杂多源激励特征提取问题,提出了一种海鸥优化算法(SOA)、变分模态分解(VMD)和独立分量分析(ICA)相结合的海水泵激励源特征提取方法。基于单通道测量信号,采用VMD算法与SOA算法选取信号平方包络谱峭度统计量作为适应度函数,寻优获取模态分解数量K、惩罚系数α及特征模态函数(IMF)分量。采用信号排列熵作为噪声检验函数,合理选取排列熵阈值,对IMF分量进行噪声筛选,获取非噪声IMF分量信号。将非噪声IMF分量与原输入信号组合,采用快速独立成分分析(Fast-ICA)算法计算得到激励源信号向量,从而实现激励源特征信号的提取。通过实船海水泵激励源特征提取试验及对比分析,验证了所提方法的有效性。研究结果表明,所提的SOA-VMD-ICA方法能满足单通道测量条件海水泵激励源特征提取准确性要求。 展开更多
关键词 特征提取 海水泵 独立分量分析 海鸥优化算法 变分模态分解
下载PDF
基于SSA-VMD和SVM的滚珠丝杠副故障诊断
14
作者 左乾君 陈国华 +4 位作者 毛杰 张帅伟 周博 张智洋 张秀琴 《机床与液压》 北大核心 2024年第12期231-238,共8页
针对滚珠丝杠副故障特征提取困难的问题,提出一种基于麻雀搜索算法优化变分模态分解算法(SSA-VMD)结合支持向量机(SVM)的滚珠丝杠副故障诊断方法。以最小包络熵作为SSA的适应度函数,对VMD参数进行自主寻优;运用IMF能量值对分解信号进行... 针对滚珠丝杠副故障特征提取困难的问题,提出一种基于麻雀搜索算法优化变分模态分解算法(SSA-VMD)结合支持向量机(SVM)的滚珠丝杠副故障诊断方法。以最小包络熵作为SSA的适应度函数,对VMD参数进行自主寻优;运用IMF能量值对分解信号进行筛选重构,去除噪声和无关成分的干扰;最后提取重构信号的8类时域特征参数和5类频域特征参数作为特征向量集,导入SVM进行故障识别模型的训练。通过搭建滚珠丝杠副故障诊断实验平台采集振动信号,分别采用SSA-VMD、VMD、EMD方法进行信号分解提取故障特征。实验结果表明:与VMD和EMD相比,SSA-VMD能针对不同的信号自主选择最优的VMD参数进行信号分解,能准确识别滚珠丝杠副故障类型,证明了基于SSA-VMD的滚珠丝杠副故障诊断的可行性和准确性。 展开更多
关键词 滚珠丝杠副 变分模态分解(vmd) 麻雀搜索算法(SSA) 故障诊断
下载PDF
基于VMD-MPC法的智能风机能量自适应分配研究
15
作者 徐君 董极慧 +2 位作者 臧腾飞 鲍鹏飞 白雪峰 《电子设计工程》 2024年第13期117-121,共5页
智能风机能量分配过程受到噪声影响,导致分配效果不理想,提出基于VMD-MPC法的智能风机能量自适应分配方法。采用VMD法对智能风机能量信号进行分解,获取信号噪声谐波和分序列波动特性。利用MPC控制方法控制智能风机能量,通过计算所有分... 智能风机能量分配过程受到噪声影响,导致分配效果不理想,提出基于VMD-MPC法的智能风机能量自适应分配方法。采用VMD法对智能风机能量信号进行分解,获取信号噪声谐波和分序列波动特性。利用MPC控制方法控制智能风机能量,通过计算所有分配任务实际的执行长度,结合最优能量分配原则实现智能风机能量的自适应分配。实验结果表明,该方法低压与高压风机能量分配的四个顶点坐标分别为(0,0,750)、(0,500,600)、(0,100,0)、(50,500,0)与(0,2 000,800)、(0,5 000,800)、(0,2 000,0)、(0,5 000,0),与理想分配结果一致,分配效果好。 展开更多
关键词 vmd-MPC法 智能风机 能量 自适应分配 变分模态分解 Lagrange二次惩罚因子
下载PDF
鹈鹕算法优化VMD参数与RF的滚动轴承故障诊断
16
作者 纪佳呈 《机械工程师》 2024年第7期59-62,66,共5页
为更好地提取滚动轴承故障特征以及提高故障检测的准确性,建立一种以鹈鹕算法优化变分模态分解(VMD)参数联合随机森林算法的故障诊断模型。首先为解决VMD算法中人为经验选取核心参数可靠性低这一问题,引入鹈鹕优化算法(POA),将最小包络... 为更好地提取滚动轴承故障特征以及提高故障检测的准确性,建立一种以鹈鹕算法优化变分模态分解(VMD)参数联合随机森林算法的故障诊断模型。首先为解决VMD算法中人为经验选取核心参数可靠性低这一问题,引入鹈鹕优化算法(POA),将最小包络熵作为适应度函数,自动搜索理想参数;其次,提取轴承各状态的多种信号特征,构建特征向量,获得重要性排序;最后将其放入随机森林(RF)分类器中,实现滚动轴承故障识别。结果表明,该方法在信号的自适应分解、有效故障信息的提取和故障分类方面具有较高的可行性,故障识别率为99.524%。 展开更多
关键词 变分模态分解(vmd) 鹈鹕优化算法(POA) 随机森林(RF) 轴承故障诊断
下载PDF
基于VMD-DESN-MSGP模型的超短期光伏功率预测 被引量:47
17
作者 王粟 江鑫 +1 位作者 曾亮 常雨芳 《电网技术》 EI CSCD 北大核心 2020年第3期917-926,共10页
光伏功率时间序列受到多种因素影响,呈现出高度的随机性和波动性。针对光伏功率时间序列可预测性低的问题,提出了一种结合变分模态分解(variationalmodal decomposition,VMD)、深度回声状态网络(deepechostate network,DESN)和稀疏高斯... 光伏功率时间序列受到多种因素影响,呈现出高度的随机性和波动性。针对光伏功率时间序列可预测性低的问题,提出了一种结合变分模态分解(variationalmodal decomposition,VMD)、深度回声状态网络(deepechostate network,DESN)和稀疏高斯混合过程专家模型(mixtureof sparse gaussian process experts model,MSGP)的超短期光伏功率预测方法。首先采用VMD将光伏功率时间序列分解为不同的模态,降低数据的非平稳性;为提高模型在超短尺度时序的预测能力,对各模态分别建立DESN预测模型,将各模态预测结果进行求和重构;为进一步提高模型预测精度,对误差的特性进行分析,采用MSGP对预测误差进行补偿;最后将误差的预测值与原功率的预测值相叠加作为最终预测结果。仿真结果表明,该方法在光伏功率时序预测中的效果比传统预测模型更好,有效提高了超短期光伏功率时间序列预测的准确性。 展开更多
关键词 光伏功率预测 时间序列 变分模态分解 深度回声状态网络 稀疏高斯混合过程专家模型
下载PDF
基于粒子群参数优化的O-VMD数据处理方法研究 被引量:10
18
作者 邢燕好 于昊 +2 位作者 张佳 桂珺 孙盈 《仪器仪表学报》 EI CAS CSCD 北大核心 2023年第4期304-313,共10页
针对电磁超声测厚换能器保护提离距过大导致回波信号微弱且信噪比低,难以在时域内直接准确提取渡越时间得到精确厚度值的问题,提出频域内粒子群(PSO)优化变分模态分解(VMD)参数的O-VMD渡越时间提取方法。分别对分解层数和惩罚因子选取... 针对电磁超声测厚换能器保护提离距过大导致回波信号微弱且信噪比低,难以在时域内直接准确提取渡越时间得到精确厚度值的问题,提出频域内粒子群(PSO)优化变分模态分解(VMD)参数的O-VMD渡越时间提取方法。分别对分解层数和惩罚因子选取固定参数,及基于峭度与功率谱熵联合适应度函数的PSO算法获取VMD遍历优化参数,进行双次VMD处理,滤除高频及低频噪声;选取能量最大模态进行信号重构,并应用希尔伯特变换获取回波信号时差。在不同提离条件下,对不同厚度铝板检测数据采用O-VMD、经验模态分解(EMD)等方法进行信号对比处理,结果表明,提离距在0~2.1 mm,O-VMD方法最大误差为0.67%,且误差与提离距成正比,为精确获取高提离距测厚数据提供依据。 展开更多
关键词 电磁超声 粒子群 参数优化 变分模态分解 O-vmd
下载PDF
基于VMD-SSI的结构模态参数识别 被引量:17
19
作者 殷红 董康立 彭珍瑞 《振动与冲击》 EI CSCD 北大核心 2020年第10期81-91,共11页
将变分模态分解(VMD)和随机子空间法(SSI)结合,提出了基于VMD-SSI的结构模态参数识别新方法。针对VMD中的模态分层数K值确定困难的问题,提出模态重复比率准则,保证了模态信息的有效分解。依据模态重复比准则确定测量信号的最优分层数K;... 将变分模态分解(VMD)和随机子空间法(SSI)结合,提出了基于VMD-SSI的结构模态参数识别新方法。针对VMD中的模态分层数K值确定困难的问题,提出模态重复比率准则,保证了模态信息的有效分解。依据模态重复比准则确定测量信号的最优分层数K;利用VMD方法进行信号并行分解,用奇异值分解(SVD)去噪,以提高模态参数的识别精度。用该研究提出的VMD-SSI方法识别模态固有频率和阻尼,用VMD方法辨识模态振型,将VMD-SSI法应用于外伸梁模型的模态参数识别,并利用统计理论分别检验识别的模态频率、模态阻尼和模态振型的精度。结果表明, VMD-SSI法识别模态参数的精度高于传统SSI法。 展开更多
关键词 变分模态分解(vmd) 随机子空间法(SSI) 模态参数识别 统计检验
下载PDF
基于VMD-MSE与SSA-SVM的往复式压缩机气阀故障诊断 被引量:10
20
作者 别锋锋 朱鸿飞 +1 位作者 彭剑 张莹 《振动与冲击》 EI CSCD 北大核心 2022年第19期289-295,共7页
往复压缩机气阀故障振动信号具有较强的非线性和非平稳性。为了从往复压缩机气阀振动信号中提取故障特征用于故障诊断,提出一种基于变分模态分解(variational mode decomposition,VMD)与多尺度熵(multi-scale entrope,MSE)的故障特征提... 往复压缩机气阀故障振动信号具有较强的非线性和非平稳性。为了从往复压缩机气阀振动信号中提取故障特征用于故障诊断,提出一种基于变分模态分解(variational mode decomposition,VMD)与多尺度熵(multi-scale entrope,MSE)的故障特征提取方法,并与采用麻雀寻优算法(soarrow search algorithm,SSA)优化的支持向量机(suppot vector mackine,SVM)相结合,用于往复压缩机气阀故障诊断;通过对往复压缩机气阀信号进行VMD分解,选取合适的内禀模态分量(intrinsic mode function,IMF)进行信号重构,基于MSE熵值分析构成特征向量集,最后将其输入SSA-SVM训练并识别故障类型。试验结果表明,基于VMD-MSE与SSA-SVM的故障诊断模型能有效并准确的识别往复压缩机气阀故障。 展开更多
关键词 往复压缩机 变分模态分解 多尺度样本熵 支持向量机 模式识别
下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部