期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Feature Extraction Method Based on Pseudo-Wigner-Ville Distribution for Rotational Machinery in Variable Operating Conditions 被引量:8
1
作者 WANG Huaqing LIKe +1 位作者 SUN Hao CHEN Peng 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2011年第4期661-668,共8页
In the case of fault diagnosis for roller bearings, the conventional diagnosis approaches by using the time interval of energy impacts in time-frequency distribution or the pass-frequencies are based on the assumption... In the case of fault diagnosis for roller bearings, the conventional diagnosis approaches by using the time interval of energy impacts in time-frequency distribution or the pass-frequencies are based on the assumption that machinery operates under a constant rotational speed. However, when the rotational speed varies in the broader range, the pass-frequencies vary with the change of rotational speed and bearing faults cannot be identified by the interval of impacts. Researches related to automatic diagnosis for rotational machinery in variable operating conditions were quite few. A novel automatic feature extraction method is proposed based on a pseudo-Wigner-Ville distribution (PWVD) and an extraction of symptom parameter (SP). An extraction method for instantaneous feature spectrum is presented using the relative crossing information (RCI) and sequential inference approach, by which the feature spectrum from time-frequency distribution can be automatically, sequentially extracted. The SPs are considered in the frequency domain using the extracted feature spectrum to identify among the conditions of a machine. A method to obtain the synthetic symptom parameter is also proposed by the least squares mapping (LSM) technique for increasing the diagnosis sensitivity of SP. Practical examples of diagnosis for bearings are given in order to verify the effectiveness of the proposed method. The verification results show that the features of bearing faults, such as the outer-race, inner-race and roller element defects have been effectively extracted, and the proposed method can be used for condition diagnosis of a machine under the variable rotational speed. 展开更多
关键词 feature extraction pseudo-wigner-ville distribution variable operating condition sequential diagnosis
下载PDF
Application of Transfer Learningin Mechanical Equipment Intelligent Diagnosis:Literature Review
2
作者 LIU Tao WANG Zhenya +1 位作者 WU Xing LI Menghang 《昆明理工大学学报(自然科学版)》 2024年第4期154-169,共16页
Accelerating the process of intelligent manufacturing and the demand for new industrial productivity,the operating conditions of machinery and equipment have become ever more severe.As an important link to ensure th... Accelerating the process of intelligent manufacturing and the demand for new industrial productivity,the operating conditions of machinery and equipment have become ever more severe.As an important link to ensure the stable operation of the production process,the condition monitoring and fault diagnosis of equipment have become equally important.The fault diagnosis of equipment in actual production is often challenged by variable working conditions,large differences in data distribution,and lack of labeled samples,etc.Traditional fault diagnosis methods are often difficult to achieve ideal results in these complex environments.Transfer learning(TL)as an emerging technology can effectively utilize existing knowledge and data to improve the diagnostic performance.Firstly,this paper analyzes the trend of mechanical equipment fault diagnosis and explains the basic concept of TL.Then TL based on parameters,TL based on features,TL based on instances and domain adaptive(DA)methods are summarized and analyzed in terms of existing TL methods.Finally,the problems faced in the current TL research are summarized and the future development trend is pointed out.This review aims to help researchers in related fields understand the latest progress of TL and promote the application and development of TL in mechanical equipment diagnosis. 展开更多
关键词 mechanical equipment transfer learning variable operating conditions fault diagnosis sample distribution differences
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部