A generalized variable-coefficient algebraic method is appfied to construct several new families of exact solutions of physical interest for (3+1)-dimensional Kadomtsev-Petviashvilli (KP) equation. Among them, th...A generalized variable-coefficient algebraic method is appfied to construct several new families of exact solutions of physical interest for (3+1)-dimensional Kadomtsev-Petviashvilli (KP) equation. Among them, the Jacobi elliptic periodic solutions exactly degenerate to the soliton solutions at a certain limit condition. Compared with the existing tanh method, the extended tanh method, the Jacobi elliptic function method, and the algebraic method, the proposed method gives new and more general solutions.展开更多
In this paper, the investigation is focused on a (3+1)-dimensional variable-coefficient Kadomtsev- Petviashvili (vcKP) equation, which can describe the realistic nonlinear phenomena in the fluid dynamics and plas...In this paper, the investigation is focused on a (3+1)-dimensional variable-coefficient Kadomtsev- Petviashvili (vcKP) equation, which can describe the realistic nonlinear phenomena in the fluid dynamics and plasma in three spatial dimensions. In order to study the integrability property of such an equation, the Painlevé analysis is performed on it. And then, based on the truncated Painlevé expansion, the bilinear form of the (3+1)-dimensionaJ vcKP equation is obtained under certain coefficients constraint, and its solution in the Wronskian determinant form is constructed and verified by virtue of the Wronskian technique. Besides the Wronskian determinant solution, it is shown that the (3+1)-dimensional vcKP equation also possesses a solution in the form of the Grammian determinant.展开更多
By truncating the Painleve expansion at the constant level term,the Hirota bilinear form is obtainedfor a (3+1)-dimensional variable-coefficient Kadomtsev-Petviashvili equation.Based on its bilinear form,solitary-wave...By truncating the Painleve expansion at the constant level term,the Hirota bilinear form is obtainedfor a (3+1)-dimensional variable-coefficient Kadomtsev-Petviashvili equation.Based on its bilinear form,solitary-wavesolutions are constructed via the ε-expansion method and the corresponding graphical analysis is given.Furthermore,the exact solution in the Wronskian form is presented and proved by direct substitution into the bilinear equation.展开更多
In this paper, the modified CK's direct method to find symmetry groups of nonlinear partial differential equation is extended to (2+1)-dimensional variable coeffficient canonical generalized KP (VCCGKP) equation...In this paper, the modified CK's direct method to find symmetry groups of nonlinear partial differential equation is extended to (2+1)-dimensional variable coeffficient canonical generalized KP (VCCGKP) equation. As a result, symmetry groups, Lie point symmetry group and Lie symmetry for the VCCGKP equation are obtained. In fact, the Lie point symmetry group coincides with that obtained by the standard Lie group approach. Applying the given Lie symmetry, we obtain five types of similarity reductions and a lot of new exact solutions, including hyperbolic function solutions, triangular periodic solutions, Jacobi elliptic function solutions and rational solutions, for the VCCGKP equation.展开更多
By the application of the extended homogeneous balance method, we derive anauto-Backlund transformation (BT) for (2+1)-dimensional variable coefficient generalized KPequations. Based on the BT, in which there are two ...By the application of the extended homogeneous balance method, we derive anauto-Backlund transformation (BT) for (2+1)-dimensional variable coefficient generalized KPequations. Based on the BT, in which there are two homogeneity equations to be solved, we obtainsome exact solutions containing single solitary waves.展开更多
The generalized (n + 1)-dimensional KP equation with variable coefficients is investigated in this paper. The bilinear form of the equation has been obtained by the Hirota direct method. In addition, with the help of ...The generalized (n + 1)-dimensional KP equation with variable coefficients is investigated in this paper. The bilinear form of the equation has been obtained by the Hirota direct method. In addition, with the help of Wronskian technique and the Pfaffian properties, Wronskian and Grammian solutions have been generated.展开更多
With the aid of symbolic computation system Maple, many exact solutions for the (3+1)-dimensional KP equation are constructed by introducing an auxiliary equation and using its new Jacobi elliptic function solution...With the aid of symbolic computation system Maple, many exact solutions for the (3+1)-dimensional KP equation are constructed by introducing an auxiliary equation and using its new Jacobi elliptic function solutions, where the new solutions are also constructed. When the modulus m → 1 and m →0, these solutions reduce to the corresponding solitary evolution solutions and trigonometric function solutions.展开更多
For describing various complex nonlinear phenomena in the realistic world,the higher-dimensional nonlinearevolution equations appear more attractive in many fields of physical and engineering sciences.In this paper,by...For describing various complex nonlinear phenomena in the realistic world,the higher-dimensional nonlinearevolution equations appear more attractive in many fields of physical and engineering sciences.In this paper,by virtueof the Hirota bilinear method and Riemann theta functions,the periodic wave solutions for the(2+1)-dimensionalBoussinesq equation and(3+1)-dimensional Kadomtsev-Petviashvili(KP)equation are obtained.Furthermore,it isshown that the known soliton solutions for the two equations can be reduced from the periodic wave solutions.展开更多
Based on the extended mapping deformation method and symbolic computation, many exact travelling wave solutions are found for the (3+1)-dimensional JM equation and the (3+1)-dimensional KP equation. The obtained solut...Based on the extended mapping deformation method and symbolic computation, many exact travelling wave solutions are found for the (3+1)-dimensional JM equation and the (3+1)-dimensional KP equation. The obtained solutions include solitary solution, periodic wave solution, rational travelling wave solution, and Jacobian and Weierstrass function solution, etc.展开更多
In this paper, we will use a simple and direct method to obtain some particular solutions of (2+1)- dimensional and (3+ 1)-dimensional KP equation expressed in terms of the Kleinian hyperelliptic functions for a...In this paper, we will use a simple and direct method to obtain some particular solutions of (2+1)- dimensional and (3+ 1)-dimensional KP equation expressed in terms of the Kleinian hyperelliptic functions for a given curve y^2 = f(x) whose genus is three. We observe that this method generalizes the auxiliary method, and can obtain the hyperelliptic functions solutions.展开更多
To transform the exponential traveling wave solutions to bilinear differential equations, a sufficient and necessary condition is proposed. Motivated by the condition, we extend the results to the(2+1)-dimensional Kad...To transform the exponential traveling wave solutions to bilinear differential equations, a sufficient and necessary condition is proposed. Motivated by the condition, we extend the results to the(2+1)-dimensional Kadomtsev–Petviashvili(KP) equation, the(3+1)-dimensional generalized Kadomtsev–Petviashvili(g-KP) equation, and the B-type Kadomtsev–Petviashvili(BKP) equation. Aa a result, we obtain some new resonant multiple wave solutions through the parameterization for wave numbers and frequencies via some linear combinations of exponential traveling waves. Finally, these new resonant type solutions can be displayed in graphs to illustrate the resonant behaviors of multiple wave solutions.展开更多
In this paper, we investigate a(3+1)-dimensional generalized variable-coefficient Kadomtsev–Petviashvili equation, which can describe the nonlinear phenomena in fluids or plasmas. Painlev′e analysis is performed for...In this paper, we investigate a(3+1)-dimensional generalized variable-coefficient Kadomtsev–Petviashvili equation, which can describe the nonlinear phenomena in fluids or plasmas. Painlev′e analysis is performed for us to study the integrability, and we find that the equation is not completely integrable. By virtue of the binary Bell polynomials,bilinear form and soliton solutions are obtained, and B¨acklund transformation in the binary-Bell-polynomial form and bilinear form are derived. Soliton collisions are graphically discussed: the solitons keep their original shapes unchanged after the collision except for the phase shifts. Variable coefficients are seen to affect the motion of solitons: when the variable coefficients are chosen as the constants, solitons keep their directions unchanged during the collision; with the variable coefficients as the functions of the temporal coordinate, the one soliton changes its direction.展开更多
With the help of the similarity transformation connected the variable-eoeicient (3+1)-dimensionai nonlin- ear Sehroedinger equation with the standard nonlinear Schr6dinger equation, we firstly obtain first-order an...With the help of the similarity transformation connected the variable-eoeicient (3+1)-dimensionai nonlin- ear Sehroedinger equation with the standard nonlinear Schr6dinger equation, we firstly obtain first-order and second-order rogue wave solutions. Then, we investigate the controllable behaviors of these rogue waves in the hyperbolic dispersion decreasing profile. Our results indicate that the integral relation between the accumulated time T and the reai time t is the basis to realize the control and manipulation of propagation behaviors of rogue waves, such as sustainment and restraint. We can modulate the value To to achieve the sustained and restrained spatiotemporai rogue waves. Moreover, the controllability for position of sustainment and restraint for spatiotemporai rogue waves can aiso be realized by setting different values of Xo.展开更多
Under investigation in this paper is a (3 q- 1)-dimensional variable-coefficient Kadomtsev-Petviashvili equation, which describes the propagation of surface and internal water waves. By virtue of the binary Bell pol...Under investigation in this paper is a (3 q- 1)-dimensional variable-coefficient Kadomtsev-Petviashvili equation, which describes the propagation of surface and internal water waves. By virtue of the binary Bell polynomials, symbolic computation and auxiliary independent variable, the bilinear forms, soliton solutions, Backlund transformations and Lax pair are obtained. Variable coefficients of the equation can affect the solitonic structure, when they are specially chosen, while curved and linear solitons are illustrated. Elastic collisions between/among two and three solitons are discussed, through which the solitons keep their original shapes invariant except for some phase shifts.展开更多
Utilizing the Wronskian technique, a combined Wronskian condition is established for a (3+1)-dimensional generalized KP equation. The generating functions for matrix entries satisfy a linear system of new partial d...Utilizing the Wronskian technique, a combined Wronskian condition is established for a (3+1)-dimensional generalized KP equation. The generating functions for matrix entries satisfy a linear system of new partial differential equations. Moreover, as applications, examples of Wronskian determinant solutions, including N-soliton solutions, periodic solutions and rational solutions, are computed.展开更多
文摘A generalized variable-coefficient algebraic method is appfied to construct several new families of exact solutions of physical interest for (3+1)-dimensional Kadomtsev-Petviashvilli (KP) equation. Among them, the Jacobi elliptic periodic solutions exactly degenerate to the soliton solutions at a certain limit condition. Compared with the existing tanh method, the extended tanh method, the Jacobi elliptic function method, and the algebraic method, the proposed method gives new and more general solutions.
基金Supported by the Specialized Research Fund for the Doctoral Program of Higher Education under Grant Nos. 20060006024 and 20080013006Chinese Ministry of Education, by the National Natural Science Foundation of China under Grant No. 60772023+2 种基金by the Open Fund of the State Key Laboratory of Software Development Environment under Grant No. SKLSDE-07-001Beijing University of Aeronautics and Astronauticsby the National Basic Research Program of China (973 Program) under Grant No. 2005CB321901
文摘In this paper, the investigation is focused on a (3+1)-dimensional variable-coefficient Kadomtsev- Petviashvili (vcKP) equation, which can describe the realistic nonlinear phenomena in the fluid dynamics and plasma in three spatial dimensions. In order to study the integrability property of such an equation, the Painlevé analysis is performed on it. And then, based on the truncated Painlevé expansion, the bilinear form of the (3+1)-dimensionaJ vcKP equation is obtained under certain coefficients constraint, and its solution in the Wronskian determinant form is constructed and verified by virtue of the Wronskian technique. Besides the Wronskian determinant solution, it is shown that the (3+1)-dimensional vcKP equation also possesses a solution in the form of the Grammian determinant.
基金Supported by the National Natural Science Foundation of China under Grant No.60772023the Open Fund of the State Key Laboratory of Software Development Environment under Grant No.BUAA-SKLSDE-09KF-04+1 种基金Beijing University of Aeronautics and Astronautics,by the National Basic Research Program of China (973 Program) under Grant No.2005CB321901the Specialized Research Fund for the Doctoral Program of Higher Education under Grant Nos.20060006024 and 200800130006,the Ministry of Education
文摘By truncating the Painleve expansion at the constant level term,the Hirota bilinear form is obtainedfor a (3+1)-dimensional variable-coefficient Kadomtsev-Petviashvili equation.Based on its bilinear form,solitary-wavesolutions are constructed via the ε-expansion method and the corresponding graphical analysis is given.Furthermore,the exact solution in the Wronskian form is presented and proved by direct substitution into the bilinear equation.
基金The project supported by the Natural Science Foundation of Shandong Province of China under Grant Nos. 2004zx16 and Q2005A01
文摘In this paper, the modified CK's direct method to find symmetry groups of nonlinear partial differential equation is extended to (2+1)-dimensional variable coeffficient canonical generalized KP (VCCGKP) equation. As a result, symmetry groups, Lie point symmetry group and Lie symmetry for the VCCGKP equation are obtained. In fact, the Lie point symmetry group coincides with that obtained by the standard Lie group approach. Applying the given Lie symmetry, we obtain five types of similarity reductions and a lot of new exact solutions, including hyperbolic function solutions, triangular periodic solutions, Jacobi elliptic function solutions and rational solutions, for the VCCGKP equation.
文摘By the application of the extended homogeneous balance method, we derive anauto-Backlund transformation (BT) for (2+1)-dimensional variable coefficient generalized KPequations. Based on the BT, in which there are two homogeneity equations to be solved, we obtainsome exact solutions containing single solitary waves.
文摘The generalized (n + 1)-dimensional KP equation with variable coefficients is investigated in this paper. The bilinear form of the equation has been obtained by the Hirota direct method. In addition, with the help of Wronskian technique and the Pfaffian properties, Wronskian and Grammian solutions have been generated.
基金The project supported by the Scientific Research Foundation of Beijing Information Science and Technology University
文摘With the aid of symbolic computation system Maple, many exact solutions for the (3+1)-dimensional KP equation are constructed by introducing an auxiliary equation and using its new Jacobi elliptic function solutions, where the new solutions are also constructed. When the modulus m → 1 and m →0, these solutions reduce to the corresponding solitary evolution solutions and trigonometric function solutions.
基金supported by the National Natural Science Foundation of China under Grant Nos.60772023 and 60372095the Key Project of the Ministry of Education under Grant No.106033+3 种基金the Open Fund of the State Key Laboratory of Software Development Environment under Grant No.SKLSDE-07-001Beijing University of Aeronautics and Astronauticsthe National Basic Research Program of China(973 Program)under Grant No.2005CB321901the Specialized Research Fund for the Doctoral Program of Higher Education of the Ministry of Education under Grant No.20060006024
文摘For describing various complex nonlinear phenomena in the realistic world,the higher-dimensional nonlinearevolution equations appear more attractive in many fields of physical and engineering sciences.In this paper,by virtueof the Hirota bilinear method and Riemann theta functions,the periodic wave solutions for the(2+1)-dimensionalBoussinesq equation and(3+1)-dimensional Kadomtsev-Petviashvili(KP)equation are obtained.Furthermore,it isshown that the known soliton solutions for the two equations can be reduced from the periodic wave solutions.
文摘Based on the extended mapping deformation method and symbolic computation, many exact travelling wave solutions are found for the (3+1)-dimensional JM equation and the (3+1)-dimensional KP equation. The obtained solutions include solitary solution, periodic wave solution, rational travelling wave solution, and Jacobian and Weierstrass function solution, etc.
基金Supported by the National Key Basic Research Project of China under Grant No. 2004CB318000
文摘In this paper, we will use a simple and direct method to obtain some particular solutions of (2+1)- dimensional and (3+ 1)-dimensional KP equation expressed in terms of the Kleinian hyperelliptic functions for a given curve y^2 = f(x) whose genus is three. We observe that this method generalizes the auxiliary method, and can obtain the hyperelliptic functions solutions.
基金Project supported by the Yue-Qi Scholar of the China University of Mining and Technology(Grant No.102504180004)the 333 Project of Jiangsu Province,China(Grant No.BRA2018320)
文摘To transform the exponential traveling wave solutions to bilinear differential equations, a sufficient and necessary condition is proposed. Motivated by the condition, we extend the results to the(2+1)-dimensional Kadomtsev–Petviashvili(KP) equation, the(3+1)-dimensional generalized Kadomtsev–Petviashvili(g-KP) equation, and the B-type Kadomtsev–Petviashvili(BKP) equation. Aa a result, we obtain some new resonant multiple wave solutions through the parameterization for wave numbers and frequencies via some linear combinations of exponential traveling waves. Finally, these new resonant type solutions can be displayed in graphs to illustrate the resonant behaviors of multiple wave solutions.
基金Supported by the National Natural Science Foundation of China under Grant No.11272023the Open Fund of State Key Laboratory of Information Photonics and Optical Communications(Beijing University of Posts and Telecommunications)under GrantNo.IPOC2013B008the Fundamental Research Funds for the Central Universities of China under Grant No.2011BUPTYB02
文摘In this paper, we investigate a(3+1)-dimensional generalized variable-coefficient Kadomtsev–Petviashvili equation, which can describe the nonlinear phenomena in fluids or plasmas. Painlev′e analysis is performed for us to study the integrability, and we find that the equation is not completely integrable. By virtue of the binary Bell polynomials,bilinear form and soliton solutions are obtained, and B¨acklund transformation in the binary-Bell-polynomial form and bilinear form are derived. Soliton collisions are graphically discussed: the solitons keep their original shapes unchanged after the collision except for the phase shifts. Variable coefficients are seen to affect the motion of solitons: when the variable coefficients are chosen as the constants, solitons keep their directions unchanged during the collision; with the variable coefficients as the functions of the temporal coordinate, the one soliton changes its direction.
基金Supported by the National Natural Science Foundation of China under Grant No.11005092the Program for Innovative Research Team of Young Teachers under Grant No.2009RC01the Scientific Research and Developed Fund under Grant No.2009FK42 of Zhejiang A&F University
文摘With the help of the similarity transformation connected the variable-eoeicient (3+1)-dimensionai nonlin- ear Sehroedinger equation with the standard nonlinear Schr6dinger equation, we firstly obtain first-order and second-order rogue wave solutions. Then, we investigate the controllable behaviors of these rogue waves in the hyperbolic dispersion decreasing profile. Our results indicate that the integral relation between the accumulated time T and the reai time t is the basis to realize the control and manipulation of propagation behaviors of rogue waves, such as sustainment and restraint. We can modulate the value To to achieve the sustained and restrained spatiotemporai rogue waves. Moreover, the controllability for position of sustainment and restraint for spatiotemporai rogue waves can aiso be realized by setting different values of Xo.
基金Supported by the National Natural Science Foundation of China under Grant No.11272023the Open Fund of State Key Laboratory of Information Photonics and Optical Communications(Beijing University of Posts and Telecommunications)under Grant No.IPOC2013B008the Fundamental Research Funds for the Central Universities of China under Grant No.2011BUPTYB02
文摘Under investigation in this paper is a (3 q- 1)-dimensional variable-coefficient Kadomtsev-Petviashvili equation, which describes the propagation of surface and internal water waves. By virtue of the binary Bell polynomials, symbolic computation and auxiliary independent variable, the bilinear forms, soliton solutions, Backlund transformations and Lax pair are obtained. Variable coefficients of the equation can affect the solitonic structure, when they are specially chosen, while curved and linear solitons are illustrated. Elastic collisions between/among two and three solitons are discussed, through which the solitons keep their original shapes invariant except for some phase shifts.
基金Supported by the National Natural Science Foundation of China under Grant No.11171312
文摘Utilizing the Wronskian technique, a combined Wronskian condition is established for a (3+1)-dimensional generalized KP equation. The generating functions for matrix entries satisfy a linear system of new partial differential equations. Moreover, as applications, examples of Wronskian determinant solutions, including N-soliton solutions, periodic solutions and rational solutions, are computed.