期刊文献+
共找到32篇文章
< 1 2 >
每页显示 20 50 100
Extended F-Expansion Method and Periodic Wave Solutions for Klein-Gordon-SchrSdinger Equations 被引量:2
1
作者 LI Xiao-Yan LI Xiang-Zheng WANG Ming-Liang 《Communications in Theoretical Physics》 SCIE CAS CSCD 2006年第1期9-14,共6页
We present an extended F-expansion method for finding periodic wave solutions of nonlinear evolution equations in mathematical physics. By using extended F-expansion method, many periodic wave solutions expressed by v... We present an extended F-expansion method for finding periodic wave solutions of nonlinear evolution equations in mathematical physics. By using extended F-expansion method, many periodic wave solutions expressed by various Jacobi elliptic functions for the Klein-Gordon-Schrodinger equations are obtained. In the limit cases, the solitary wave solutions and trigonometric function solutions for the equations are also obtained. 展开更多
关键词 Klein-Gordon-Schrodinger equations f-expansion method periodic wave solutions Jacobi elliptic functions solitary wave solutions
下载PDF
Applications of F-expansion method to the coupled KdV system 被引量:2
2
作者 李保安 王明亮 《Chinese Physics B》 SCIE EI CAS CSCD 2005年第9期1698-1706,共9页
An extended F-expansion method for finding periodic wave solutions of nonlinear evolution equations in mathematical physics is presented, which can be thought of as a concentration of extended Jacobi elliptic function... An extended F-expansion method for finding periodic wave solutions of nonlinear evolution equations in mathematical physics is presented, which can be thought of as a concentration of extended Jacobi elliptic function expansion method proposed more recently. By using the homogeneous balance principle and the extended F-expansion, more periodic wave solutions expressed by Jacobi elliptic functions for the coupled KdV equations are derived. In the limit cases, the solitary wave solutions and the other type of travelling wave solutions for the system are also obtained. 展开更多
关键词 coupled KdV equations extended f-expansion method Jacobi elliptic functions periodic wave solutions solitary wave solutions
下载PDF
A Generalized Variable-Coefficient Algebraic Method Exactly Solving (3+1)-Dimensional Kadomtsev-Petviashvilli Equation 被引量:3
3
作者 BAI Cheng-Lin BAI Cheng-Jie ZHAO Hong 《Communications in Theoretical Physics》 SCIE CAS CSCD 2005年第5X期821-826,共6页
A generalized variable-coefficient algebraic method is appfied to construct several new families of exact solutions of physical interest for (3+1)-dimensional Kadomtsev-Petviashvilli (KP) equation. Among them, th... A generalized variable-coefficient algebraic method is appfied to construct several new families of exact solutions of physical interest for (3+1)-dimensional Kadomtsev-Petviashvilli (KP) equation. Among them, the Jacobi elliptic periodic solutions exactly degenerate to the soliton solutions at a certain limit condition. Compared with the existing tanh method, the extended tanh method, the Jacobi elliptic function method, and the algebraic method, the proposed method gives new and more general solutions. 展开更多
关键词 generalized variable-coefficient algebraic method (3+1)-dimensional KP equation exact explicit solutions
下载PDF
A Generalization of F-Expansion Method and Its Application to (2+l)-Dimensional Boussinesq Equation 被引量:1
4
作者 CHEN Jiang YANG Kong-Qing HE Hong-Sheng 《Communications in Theoretical Physics》 SCIE CAS CSCD 2007年第5X期877-880,共4页
A new generalized F-expansion method is introduced and applied to the study of the (2+1)-dimensional Boussinesq equation. The further extension of the method is discussed at the end of this paper.
关键词 f-expansion method Jacobi elliptic function Boussinesq equation solitary wave solution
下载PDF
Exact solutions for the coupled Klein-Gordon-Schrǒdinger equations using the extended F-expansion method 被引量:1
5
作者 何红生 陈江 杨孔庆 《Chinese Physics B》 SCIE EI CAS CSCD 2005年第10期1926-1931,共6页
The extended F-expansion method or mapping method is used to construct exact solutions for the coupled KleinGordon Schr/Sdinger equations (K-G-S equations) by the aid of the symbolic computation system Mathematica. ... The extended F-expansion method or mapping method is used to construct exact solutions for the coupled KleinGordon Schr/Sdinger equations (K-G-S equations) by the aid of the symbolic computation system Mathematica. More solutions in the Jacobi elliptic function form are obtained, including the single Jacobi elliptic function solutions, combined Jacobi elliptic function solutions, rational solutions, triangular solutions, soliton solutions and combined soliton solutions. 展开更多
关键词 extended f-expansion method exact solutions coupled K-G-S equations Jacobi elliptic function
下载PDF
A Generalized F-expansion Method and Its Application in High-Dimensional Nonlinear Evolution Equation 被引量:1
6
作者 CHEN Jiang HE Hong-Sheng YANG Kong-Qing 《Communications in Theoretical Physics》 SCIE CAS CSCD 2005年第2X期307-310,共4页
A generalized F-expansion method is introduced and applied to (3+ 1)-dimensional Kadomstev-Petviashvili(KP) equation. As a result, some new Jacobi elliptic function solutions of the equation are found, from which the ... A generalized F-expansion method is introduced and applied to (3+ 1)-dimensional Kadomstev-Petviashvili(KP) equation. As a result, some new Jacobi elliptic function solutions of the equation are found, from which the trigonometric function solutions and the solitary wave solutions can be obtained. The method can also be extended to other types of nonlinear evolution equations in mathematical physics. 展开更多
关键词 f-expansion method Jacobi elliptic function KP equation solitary wave solution trigonometric function solution
下载PDF
On a Generalized Extended F-Expansion Method 被引量:1
7
作者 REN Yu-Jie LIU Shu-Tian ZHANG Hong-Qing 《Communications in Theoretical Physics》 SCIE CAS CSCD 2006年第1期15-28,共14页
Making use of a new generalized ansatz, we present a new generalized extended F-expansion method for constructing the exact solutions of nonlinear partial differential equations in a unified way. Applying the generali... Making use of a new generalized ansatz, we present a new generalized extended F-expansion method for constructing the exact solutions of nonlinear partial differential equations in a unified way. Applying the generalized method with the aid of Maple, we consider the (2+1)-dimentional breaking soliton equation. As a result, we successfully obtain some new and more general solutions including Jacobi elliptic function solutions, soliton-like solutions, trigonometric function solutions, and so on. As an illustrative sampler the properties of some soliton solutions for the breaking soliton equation are shown by some figures. Our method can also be applied to other partial differential equations. 展开更多
关键词 (2+1)-dimentional breaking soliton equation generalized extended f-expansion method Jacobi elliptic function solution generalized ansatz soliton-like solution
下载PDF
Various Methods for Constructing Auto-Bcklund Transformations for a Generalized Variable-Coefficient Korteweg-de Vries Model from Plasmas and Fluid Dynamics
8
作者 ZHANG Chun-Yi GAO Yi-Tian +5 位作者 XU Tao LI Li-Li SUN Fu-Wei LI Juan MENG Xiang-Hua WEI Guang-Mei 《Communications in Theoretical Physics》 SCIE CAS CSCD 2008年第3期673-678,共6页
In this paper, under the Painleve-integrable condition, the auto-Biicklund transformations in different forms for a variable-coefficient Korteweg-de Vries model with physical interests are obtained through various met... In this paper, under the Painleve-integrable condition, the auto-Biicklund transformations in different forms for a variable-coefficient Korteweg-de Vries model with physical interests are obtained through various methods including the Hirota method, truncated Painleve expansion method, extendedvariable-coefficient balancing-act method, and Lax pair. Additionally, the compatibility for the truncated Painleve expansion method and extended variable-coetfficient balancing-act method is testified. 展开更多
关键词 variable-coefficient Korteweg-de truncated Painleve expansion Schwarzian derivative-scattering Vries models auto-Backlund transformation Hirota method method extended variable-coefficient balancing-act method method Lax pair
下载PDF
Variable-Coefficient Mapping Method Based on Elliptical Equation and Exact Solutions to Nonlinear SchrSdinger Equations with Variable Coefficient
9
作者 GE Jian-Ya WANG Rui-Min +1 位作者 DAI Chao-Qing ZHANG Jie-Fang 《Communications in Theoretical Physics》 SCIE CAS CSCD 2006年第4X期656-662,共7页
In this paper, by means of the variable-coefficient mapping method based on elliptical equation, we obtain explicit solutions of nonlinear Schrodinger equation with variable-coefficient. These solutions include Jacobi... In this paper, by means of the variable-coefficient mapping method based on elliptical equation, we obtain explicit solutions of nonlinear Schrodinger equation with variable-coefficient. These solutions include Jacobian elliptic function solutions, solitary wave solutions, soliton-like solutions, and trigonometric function solutions, among which some are found for the first time. Six figures are given to illustrate some features of these solutions. The method can be applied to other nonlinear evolution equations in mathematical physics. 展开更多
关键词 variable-coefficient mapping method based on elliptical equation nonlinear Schrodinger equation Jacobian elliptic function solutions solitonic solutions trigonometric function solutions
下载PDF
Exact Solutions for a Nonisospectral and Variable-Coefficient KdV Equation 被引量:1
10
作者 DENGShu-Fang 《Communications in Theoretical Physics》 SCIE CAS CSCD 2005年第6期961-964,共4页
The bilinear form for a nonisospectral and variable-coefficient KdV equation is obtained and some exact soliton solutions are derived through Hirota method and Wronskian technique. We also derive the bilmear transform... The bilinear form for a nonisospectral and variable-coefficient KdV equation is obtained and some exact soliton solutions are derived through Hirota method and Wronskian technique. We also derive the bilmear transformation from its Lax pairs and End solutions with the help of the obtained bilinear transformation. 展开更多
关键词 nonisospectral and variable-coefficient KdV equation Hirota method Wronskian technique TRANSFORMATION
下载PDF
Infinite Sequence of Conservation Laws and Analytic Solutions for a Generalized Variable-Coefficient Fifth-Order Korteweg-de Vries Equation in Fluids 被引量:1
11
作者 于鑫 高以天 +1 位作者 孙志远 刘颖 《Communications in Theoretical Physics》 SCIE CAS CSCD 2011年第4期629-634,共6页
In this paper, an infinite sequence of conservation laws for a generalized variable-coefficient fifth-order Korteweg-de Vries equation in fluids are constructed based on the Backlund transformation. Hirota bilinear fo... In this paper, an infinite sequence of conservation laws for a generalized variable-coefficient fifth-order Korteweg-de Vries equation in fluids are constructed based on the Backlund transformation. Hirota bilinear form and symbolic computation are applied to obtain three kinds of solutions. Variable coefficients can affect the conserved density, associated flux, and appearance of the characteristic lines. Effects of the wave number on the soliton structures are also discussed and types of soliton structures, e.g., the double-periodic soliton, parallel soliton and soliton complexes, are presented. 展开更多
关键词 variable-coefficient fifth-order Korteweg-de Vries equation in fluids infinite sequence of conservation laws Hirota bilinear method soliton solutions wave number symbolic computation
下载PDF
Using reproducing kernel for solving a class of partial differential equation with variable-coefficients
12
作者 王玉兰 朝鲁 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2008年第1期129-137,共9页
How to solve the partial differential equation has been attached importance to by all kinds of fields. The exact solution to a class of partial differential equation with variable-coefficient is obtained in reproducin... How to solve the partial differential equation has been attached importance to by all kinds of fields. The exact solution to a class of partial differential equation with variable-coefficient is obtained in reproducing kernel space. For getting the approximate solution, give an iterative method, convergence of the iterative method is proved. The numerical example shows that our method is effective and good practicability. 展开更多
关键词 iterative method exact solution approximate solution variable-coefficient partial differential equation reproducing kernel
下载PDF
Multi-Waves,Breathers,Periodic and Cross-Kink Solutions to the(2+1)-Dimensional Variable-Coefficient Caudrey-Dodd-Gibbon-Kotera-Sawada Equation
13
作者 LIU Dong JU Xiaodong +2 位作者 ILHAN Onur Alp MANAFIAN Jalil ISMAEL Hajar Farhan 《Journal of Ocean University of China》 SCIE CAS CSCD 2021年第1期35-44,共10页
The present article deals with multi-waves and breathers solution of the(2+1)-dimensional variable-coefficient CaudreyDodd-Gibbon-Kotera-Sawada equation under the Hirota bilinear operator method.The obtained solutions... The present article deals with multi-waves and breathers solution of the(2+1)-dimensional variable-coefficient CaudreyDodd-Gibbon-Kotera-Sawada equation under the Hirota bilinear operator method.The obtained solutions for solving the current equation represent some localized waves including soliton,solitary wave solutions,periodic and cross-kink solutions in which have been investigated by the approach of the bilinear method.Mainly,by choosing specific parameter constraints in the multi-waves and breathers,all cases the periodic and cross-kink solutions can be captured from the 1-and 2-soliton.The obtained solutions are extended with numerical simulation to analyze graphically,which results in 1-and 2-soliton solutions and also periodic and cross-kink solutions profiles.That will be extensively used to report many attractive physical phenomena in the fields of acoustics,heat transfer,fluid dynamics,classical mechanics,and so on.We have shown that the assigned method is further general,efficient,straightforward,and powerful and can be exerted to establish exact solutions of diverse kinds of fractional equations originated in mathematical physics and engineering.We have depicted the figures of the evaluated solutions in order to interpret the physical phenomena. 展开更多
关键词 variable-coefficient Caudrey-Dodd-Gibbon-Kotera-Sawada equation Hirota bilinear operator method soliton multi-waves and breathers periodic and cross-kink solitray wave solutions
下载PDF
New Type of Variable-coefficient KP Equation with Self-consistent Sources and Its Grammian Solutions
14
作者 XING Xiu-zhi LIU Yan-wei 《Chinese Quarterly Journal of Mathematics》 CSCD 2013年第1期152-158,共7页
New type of variable-coefficient KP equation with self-consistent sources and its Grammian solutions are obtained by using the source generation procedure.
关键词 source generation procedure variable-coefficient KP equation hipota’s bilinear method grammian solution
下载PDF
High-Order Solitons and Hybrid Behavior of (3 + 1)-Dimensional Potential Yu-Toda-Sasa-Fukuyama Equation with Variable Coefficients
15
作者 Xiyu Tan Xingying Li 《Journal of Applied Mathematics and Physics》 2024年第8期2738-2763,共26页
In this paper, some exact solutions of the (3 + 1)-dimensional variable-coefficient Yu-Toda-Sasa-Fukuyama equation are investigated. By using Hirota’s direct method and symbolic computation, we obtained N-soliton sol... In this paper, some exact solutions of the (3 + 1)-dimensional variable-coefficient Yu-Toda-Sasa-Fukuyama equation are investigated. By using Hirota’s direct method and symbolic computation, we obtained N-soliton solution. By using the long wave limit method, the N-order rational solution can be obtained from N-order soliton solution. Then, through the paired complexification of parameters, the lump solution is obtained from N-order rational solution. Meanwhile, we obtained a hybrid solution between 1-lump solution and N-soliton (N=1,2) by using the long wave limit method and parameter complex. Furthermore, four different sets of three-dimensional graphs of solitons, lump solutions and hybrid solutions are drawn by selecting four different sets of coefficient functions which include one set of constant coefficient function and three sets of variable coefficient functions. 展开更多
关键词 variable-coefficient YTSF Equation Hirota Bilinear method N-SOLITON Hybrid Solution
下载PDF
Propagation of traveling wave solutions to the Vakhnenko-Parkes dynamical equation via modified mathematical methods
16
作者 Aly R.Seadawy Asghar Ali +1 位作者 Wafaa A.Albarakati Dumitru Baleanu 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2022年第1期21-34,共14页
In this paper, we investigate some new traveling wave solutions to Vakhnenko-Parkes equation via three modified mathematical methods. The derived solutions have been obtained including periodic and solitons solutions ... In this paper, we investigate some new traveling wave solutions to Vakhnenko-Parkes equation via three modified mathematical methods. The derived solutions have been obtained including periodic and solitons solutions in the form of trigonometric, hyperbolic, and rational function solutions. The graphical representations of some solutions by assigning particular values to the parameters under prescribed conditions in each solutions and comparing of solutions with those gained by other authors indicate that these employed techniques are more effective, efficient and applicable mathematical tools for solving nonlinear problems in applied science. 展开更多
关键词 Vakhnenko-Parkes equation(VPE) generalized direct algebraic method extended simple equation method modified f-expansion method
下载PDF
New Exact Solutions of Time Fractional Gardner Equation by Using New Version of F-Expansion Method 被引量:10
17
作者 Yusuf Pandir Hasan Huseyin Duzgun 《Communications in Theoretical Physics》 SCIE CAS CSCD 2017年第1期9-14,共6页
In this article, we consider analytical solutions of the time fractional derivative Gardner equation by using the new version of F-expansion method. With this proposed method multiple Jacobi elliptic functions are sit... In this article, we consider analytical solutions of the time fractional derivative Gardner equation by using the new version of F-expansion method. With this proposed method multiple Jacobi elliptic functions are situated in the solution function. As a result, various exact analytical solutions consisting of single and combined Jacobi elliptic functions solutions are obtained. 展开更多
关键词 new version of f-expansion method nonlinear differential equations with fractional derivatives single and combined Jacobi elliptic functions solutions
原文传递
New Exact Solutions to Dispersive Long-Wave Equations in (2+1)-Dimensional Space 被引量:2
18
作者 TIAN Ying-Hui CHEN Han-Lin LIU Xi-Qiang 《Communications in Theoretical Physics》 SCIE CAS CSCD 2006年第2期207-210,共4页
New exact solutions expressed by the Jacobi elliptic functions are obtained to the (2+1)-dimensional dispersive long-wave equations by using the modified F-expansion method. In the limit case, new solitary wave sol... New exact solutions expressed by the Jacobi elliptic functions are obtained to the (2+1)-dimensional dispersive long-wave equations by using the modified F-expansion method. In the limit case, new solitary wave solutions and triangular periodic wave solutions are obtained as well. 展开更多
关键词 dispersive long-wave equations modified f-expansion method exact solutions Jacobi elliptic functions
下载PDF
Integrable Variable-coefficient Coupled Cylindrical NLS Equations and Their Explicit Solutions 被引量:2
19
作者 Ting SU Guo-hua DING Jian-yin FANG 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2014年第4期1017-1024,共8页
Based on the generalized dressing method, we propose integrable variable coefficient coupled cylin-drical nonlinear SchrSdinger equations and their Lax pairs. As applications, their explicit solutions and their reduct... Based on the generalized dressing method, we propose integrable variable coefficient coupled cylin-drical nonlinear SchrSdinger equations and their Lax pairs. As applications, their explicit solutions and their reductions are constructed. 展开更多
关键词 variable-coefficient coupled NLS equations the generalized dressing method INTEGRABILITY
原文传递
New Exact Solutions to Long-Short Wave Interaction Equations 被引量:1
20
作者 TIAN Ying-Hui CHEN Han-Lin LIU Xi-Qiang 《Communications in Theoretical Physics》 SCIE CAS CSCD 2006年第3X期397-402,共6页
New exact solutions expressed by the Jacobi elliptic functions are obtained to the long-short wave interaction equations by using the modified F-expansion method. In the limit case, solitary wave solutions and triangu... New exact solutions expressed by the Jacobi elliptic functions are obtained to the long-short wave interaction equations by using the modified F-expansion method. In the limit case, solitary wave solutions and triangular periodic wave solutions are obtained as well. 展开更多
关键词 long-short wave interaction equations modified f-expansion method exact solutions Jacobi elliptic functions
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部