Large-scale renewable energy integration decreases the system inertia and restricts frequency regulation. To maintain the frequency stability, allocating adequate frequency-support sources poses a critical challenge t...Large-scale renewable energy integration decreases the system inertia and restricts frequency regulation. To maintain the frequency stability, allocating adequate frequency-support sources poses a critical challenge to planners. In this context, we propose a frequency-constrained coordination planning model of thermal units, wind farms, and battery energy storage systems (BESSs) to provide satisfactory frequency supports. Firstly, a modified multi-machine system frequency response (MSFR) model that accounts for the dynamic responses from both synchronous generators and grid-connected inverters is constructed with preset power-headroom. Secondly, the rate-of-change-of-frequency (ROCOF) and frequency response power are deduced to construct frequency constraints. A data-driven piecewise linearization (DDPWL) method based on hyperplane fitting and data classification is applied to linearize the highly nonlinear frequency response power. Thirdly, frequency constraints are inserted into our planning model, while the unit commitment based on the coordinated operation of the thermal-hydro-wind-BESS hybrid system is implemented. At last, the proposed model is applied to the IEEE RTS-79 test system. The results demonstrate the effectiveness of our co-planning model to keep the frequency stability.展开更多
As the proportion of renewable energy(RE)increases,the inertia and the primary frequency regulation(FR)capability of the power system decrease.Thus,ensuring frequency security in the scheduling model has become a new ...As the proportion of renewable energy(RE)increases,the inertia and the primary frequency regulation(FR)capability of the power system decrease.Thus,ensuring frequency security in the scheduling model has become a new technical requirement in power systems with a high share of RE.Due to a shortage of conventional synchronous generators,the frequency support of multi-source converters has become an indispensable part of the system frequency resources,especially variable-speed wind turbine generation(WTG)and battery energy storage(BES).Quantitative expression of the FR capability of multi-source converters is necessary to construct frequency-constrained scheduling model.However,the frequency support performance of these converter-interfaced devices is related to their working states,operation modes,and parameters,and the complex coupling of these factors has not been fully exploited in existing models.In this study,we propose an integrated frequency-constrained scheduling model considering the coordination of FR capabilities from multi-source converters.Switchable FR control strategies and variable FR parameters for WTG with or without reserved power are modeled,and multi-target allocation of BES capacity between tracking dispatch instruction and emergency FR is analyzed.Then,the variable FR capabilities of WTG and BES are embedded into the integrated frequency-constrained scheduling model.The nonlinear constraints for frequency security are precisely linearized through an improved iteration-based strategy.The effectiveness of the proposed model is verified in a modified IEEE 24-bus standard system.The results suggest that the coordinated participation of BES and WTG in FR can effectively reduce the cost of the scheduling model while meeting frequency security constraints.展开更多
Doubly-Fed Induction Generator (DFIG), with vector control applied, is widely used in Variable-Speed Constant- Frequency (VSCF) wind energy generation system and shows good performance in maximum wind energy captu...Doubly-Fed Induction Generator (DFIG), with vector control applied, is widely used in Variable-Speed Constant- Frequency (VSCF) wind energy generation system and shows good performance in maximum wind energy capture. But in two traditional vector control schemes, the equivalent stator magnetizing current is considered invariant in order to simplify the rotor current inner-loop controller. The two schemes can perform very well when the grid is in normal condition. However, when grid disturbance such as grid voltage dip or swell fault occurs, the control performance worsens, the rotor over current occurs and the Fault Ride-Through (FRT) capability of the DFIG wind energy generation system gets seriously deteriorated. An accurate DFIG model was used to deeply investigate the deficiency of the traditional vector control. The improved control schemes of two typical traditional vector control schemes used in DFIG were proposed, and simulation study of the proposed and traditional control schemes, with robust rotor current control using Internal Model Control (IMC) method, was carded out. The validity of the proposed modified schemes to control the rotor current and to improve the FRT capability of the DFIG wind energy generation system was proved by the comparison study.展开更多
Network frequency control function is incorporated into a grid-connected wind farm-dual battery energy storage system(BESS)scheme.The design of the scheme takes advantage of the rapid response characteristics of the B...Network frequency control function is incorporated into a grid-connected wind farm-dual battery energy storage system(BESS)scheme.The design of the scheme takes advantage of the rapid response characteristics of the BESS and the in-built short-term overloading capability of the associated power conversion devices.A control strategy to regulate the BESS output power is then proposed.It is shown that the frequency control action offered by the BESS complements amicably with that of conventional generators in enhancing the frequency regulation attribute of the grid system.展开更多
基金This work was supported by the National Key R&D Program of China (No. 2016YFB0900100)the National Natural Science Foundation of China (No. 51807116).
文摘Large-scale renewable energy integration decreases the system inertia and restricts frequency regulation. To maintain the frequency stability, allocating adequate frequency-support sources poses a critical challenge to planners. In this context, we propose a frequency-constrained coordination planning model of thermal units, wind farms, and battery energy storage systems (BESSs) to provide satisfactory frequency supports. Firstly, a modified multi-machine system frequency response (MSFR) model that accounts for the dynamic responses from both synchronous generators and grid-connected inverters is constructed with preset power-headroom. Secondly, the rate-of-change-of-frequency (ROCOF) and frequency response power are deduced to construct frequency constraints. A data-driven piecewise linearization (DDPWL) method based on hyperplane fitting and data classification is applied to linearize the highly nonlinear frequency response power. Thirdly, frequency constraints are inserted into our planning model, while the unit commitment based on the coordinated operation of the thermal-hydro-wind-BESS hybrid system is implemented. At last, the proposed model is applied to the IEEE RTS-79 test system. The results demonstrate the effectiveness of our co-planning model to keep the frequency stability.
基金supported by the National Key Research and Development Program of China(No.2021YFB2400500)the Science and Technology Project of State Grid Corporation of China“Fast control of photovoltaic and wind power plant for transient frequency/voltage support”.
文摘As the proportion of renewable energy(RE)increases,the inertia and the primary frequency regulation(FR)capability of the power system decrease.Thus,ensuring frequency security in the scheduling model has become a new technical requirement in power systems with a high share of RE.Due to a shortage of conventional synchronous generators,the frequency support of multi-source converters has become an indispensable part of the system frequency resources,especially variable-speed wind turbine generation(WTG)and battery energy storage(BES).Quantitative expression of the FR capability of multi-source converters is necessary to construct frequency-constrained scheduling model.However,the frequency support performance of these converter-interfaced devices is related to their working states,operation modes,and parameters,and the complex coupling of these factors has not been fully exploited in existing models.In this study,we propose an integrated frequency-constrained scheduling model considering the coordination of FR capabilities from multi-source converters.Switchable FR control strategies and variable FR parameters for WTG with or without reserved power are modeled,and multi-target allocation of BES capacity between tracking dispatch instruction and emergency FR is analyzed.Then,the variable FR capabilities of WTG and BES are embedded into the integrated frequency-constrained scheduling model.The nonlinear constraints for frequency security are precisely linearized through an improved iteration-based strategy.The effectiveness of the proposed model is verified in a modified IEEE 24-bus standard system.The results suggest that the coordinated participation of BES and WTG in FR can effectively reduce the cost of the scheduling model while meeting frequency security constraints.
基金Project (No.50577056) supported by the National Natural Science Foundation of China
文摘Doubly-Fed Induction Generator (DFIG), with vector control applied, is widely used in Variable-Speed Constant- Frequency (VSCF) wind energy generation system and shows good performance in maximum wind energy capture. But in two traditional vector control schemes, the equivalent stator magnetizing current is considered invariant in order to simplify the rotor current inner-loop controller. The two schemes can perform very well when the grid is in normal condition. However, when grid disturbance such as grid voltage dip or swell fault occurs, the control performance worsens, the rotor over current occurs and the Fault Ride-Through (FRT) capability of the DFIG wind energy generation system gets seriously deteriorated. An accurate DFIG model was used to deeply investigate the deficiency of the traditional vector control. The improved control schemes of two typical traditional vector control schemes used in DFIG were proposed, and simulation study of the proposed and traditional control schemes, with robust rotor current control using Internal Model Control (IMC) method, was carded out. The validity of the proposed modified schemes to control the rotor current and to improve the FRT capability of the DFIG wind energy generation system was proved by the comparison study.
文摘Network frequency control function is incorporated into a grid-connected wind farm-dual battery energy storage system(BESS)scheme.The design of the scheme takes advantage of the rapid response characteristics of the BESS and the in-built short-term overloading capability of the associated power conversion devices.A control strategy to regulate the BESS output power is then proposed.It is shown that the frequency control action offered by the BESS complements amicably with that of conventional generators in enhancing the frequency regulation attribute of the grid system.