Based on fractional isospectral problems and general bilinear forms, the gener-alized fractional trace identity is presented. Then, a new explicit Lie algebra is introduced for which the new fractional integrable coup...Based on fractional isospectral problems and general bilinear forms, the gener-alized fractional trace identity is presented. Then, a new explicit Lie algebra is introduced for which the new fractional integrable couplings of a fractional soliton hierarchy are derived from a fractional zero-curvature equation. Finally, we obtain the fractional Hamiltonian structures of the fractional integrable couplings of the soliton hierarchy.展开更多
A semi-direct sum of two Lie algebras of four-by-four matrices is presented,and a discrete four-by-fourmatrix spectral problem is introduced.A hierarchy of discrete integrable coupling systems is derived.The obtainedi...A semi-direct sum of two Lie algebras of four-by-four matrices is presented,and a discrete four-by-fourmatrix spectral problem is introduced.A hierarchy of discrete integrable coupling systems is derived.The obtainedintegrable coupling systems are all written in their Hamiltonian forms by the discrete variational identity.Finally,we prove that the lattice equations in the obtained integrable coupling systems are all Liouville integrable discreteHamiltonian systems.展开更多
Based on semi-direct sums of Lie subalgebra G, a higher-dimensional 6 × 6 matrix Lie algebra sμ(6) is constructed. A hierarchy of integrable coupling KdV equation with three potentials is proposed, which is de...Based on semi-direct sums of Lie subalgebra G, a higher-dimensional 6 × 6 matrix Lie algebra sμ(6) is constructed. A hierarchy of integrable coupling KdV equation with three potentials is proposed, which is derived from a new discrete six-by-six matrix spectral problem. Moreover, the Hamiltonian forms is deduced for lattice equation in the resulting hierarchy by means of the discrete variational identity -- a generalized trace identity. A strong symmetry operator of the resulting hierarchy is given. Finally, we prove that the hierarchy of the resulting Hamiltonian equations is Liouville integrable discrete Hamiltonian systems.展开更多
Two different integrable couplings of the modified Tu hierarchy are obtained under the zero curvatureequation by using two higher dimension Lie algebras.Furthermore,a complex Hamiltonian structures of the secondintegr...Two different integrable couplings of the modified Tu hierarchy are obtained under the zero curvatureequation by using two higher dimension Lie algebras.Furthermore,a complex Hamiltonian structures of the secondintegrable couplings is presented by taking use of the variational identity.展开更多
Based on a kind of non-semisimple Lie algebras, we establish a way to construct nonlinear continuous integrable couplings. Variational identities over the associated loop algebras are used to furnish Hamiltonian struc...Based on a kind of non-semisimple Lie algebras, we establish a way to construct nonlinear continuous integrable couplings. Variational identities over the associated loop algebras are used to furnish Hamiltonian structures of the resulting continuous couplings.As an illustrative example of the scheme is given nonlinear continuous integrable couplings of the Yang hierarchy.展开更多
Based on a kind of Lie a/gebra G proposed by Zhang, one isospectral problem is designed. Under the framework of zero curvature equation, a new kind of integrable coupling of an equation hierarchy is generated using th...Based on a kind of Lie a/gebra G proposed by Zhang, one isospectral problem is designed. Under the framework of zero curvature equation, a new kind of integrable coupling of an equation hierarchy is generated using the methods proposed by Ma and Gao. With the help of variational identity, we get the Hamiltonian structure of the hierarchy.展开更多
In this paper, we study the following degenerate critical elliptic equation with anisotropic coefficients-div(|x N | 2α▽u) = K(x)|x N | α·2 * (s)-s |u| 2 * (s)-2 u in R N ,where x = (x 1 , . . . , x N ) ∈ R N...In this paper, we study the following degenerate critical elliptic equation with anisotropic coefficients-div(|x N | 2α▽u) = K(x)|x N | α·2 * (s)-s |u| 2 * (s)-2 u in R N ,where x = (x 1 , . . . , x N ) ∈ R N , N≥3, α > 1/2, 0≤ s ≤2 and 2 * (s) = 2(N-s)/(N-2). Some basic properties of the degenerate elliptic operator -div(|x N |2α▽u) are investigated and some regularity, symmetry and uniqueness results for entire solutions of this equation are obtained. We also get some variational identities for solutions of this equation. As consequences, we obtain some nonexistence results for this equation.展开更多
基金supported by the National Natural Science Foundation of China(1127100861072147+1 种基金11071159)the First-Class Discipline of Universities in Shanghai and the Shanghai University Leading Academic Discipline Project(A13-0101-12-004)
文摘Based on fractional isospectral problems and general bilinear forms, the gener-alized fractional trace identity is presented. Then, a new explicit Lie algebra is introduced for which the new fractional integrable couplings of a fractional soliton hierarchy are derived from a fractional zero-curvature equation. Finally, we obtain the fractional Hamiltonian structures of the fractional integrable couplings of the soliton hierarchy.
基金the Natural Science Foundation of Shandong Province under Grant No.Q2006A04
文摘A semi-direct sum of two Lie algebras of four-by-four matrices is presented,and a discrete four-by-fourmatrix spectral problem is introduced.A hierarchy of discrete integrable coupling systems is derived.The obtainedintegrable coupling systems are all written in their Hamiltonian forms by the discrete variational identity.Finally,we prove that the lattice equations in the obtained integrable coupling systems are all Liouville integrable discreteHamiltonian systems.
基金Supported by the Nature Science Foundation of Shandong Province of China under Grant No.ZR.2009GM005the Science and Technology Plan Project of the Educational Department of Shandong Province of China under Grant No.J09LA54the research project of "SUST Spring Bud" of Shandong University of Science and Technology of China under Grant No.2009AZZ071
文摘Based on semi-direct sums of Lie subalgebra G, a higher-dimensional 6 × 6 matrix Lie algebra sμ(6) is constructed. A hierarchy of integrable coupling KdV equation with three potentials is proposed, which is derived from a new discrete six-by-six matrix spectral problem. Moreover, the Hamiltonian forms is deduced for lattice equation in the resulting hierarchy by means of the discrete variational identity -- a generalized trace identity. A strong symmetry operator of the resulting hierarchy is given. Finally, we prove that the hierarchy of the resulting Hamiltonian equations is Liouville integrable discrete Hamiltonian systems.
文摘Two different integrable couplings of the modified Tu hierarchy are obtained under the zero curvatureequation by using two higher dimension Lie algebras.Furthermore,a complex Hamiltonian structures of the secondintegrable couplings is presented by taking use of the variational identity.
基金Foundation item: Supported by the Natural Science Foundation of China(11271008, 61072147, 11071159) Supported by the First-class Discipline of Universities in Shanghai Supported by the Shanghai University Leading Academic Discipline Project(A13-0101-12-004)
文摘Based on a kind of non-semisimple Lie algebras, we establish a way to construct nonlinear continuous integrable couplings. Variational identities over the associated loop algebras are used to furnish Hamiltonian structures of the resulting continuous couplings.As an illustrative example of the scheme is given nonlinear continuous integrable couplings of the Yang hierarchy.
基金Supported by the Natural Science Foundation of China under Grant Nos.11271008,61072147,11071159the Shanghai Leading Academic Discipline Project under Grant No.J50101the Shanghai Univ.Leading Academic Discipline Project(A.13-0101-12-004)
文摘Based on a kind of Lie a/gebra G proposed by Zhang, one isospectral problem is designed. Under the framework of zero curvature equation, a new kind of integrable coupling of an equation hierarchy is generated using the methods proposed by Ma and Gao. With the help of variational identity, we get the Hamiltonian structure of the hierarchy.
基金supported by National Natural Science Foundation of China (Grant Nos. 10901112, 11001255)Beijing Natural Science Foundation (Grant No. 1102013)China Postdoctoral Science Foundation (Grant No. 20090460548)
文摘In this paper, we study the following degenerate critical elliptic equation with anisotropic coefficients-div(|x N | 2α▽u) = K(x)|x N | α·2 * (s)-s |u| 2 * (s)-2 u in R N ,where x = (x 1 , . . . , x N ) ∈ R N , N≥3, α > 1/2, 0≤ s ≤2 and 2 * (s) = 2(N-s)/(N-2). Some basic properties of the degenerate elliptic operator -div(|x N |2α▽u) are investigated and some regularity, symmetry and uniqueness results for entire solutions of this equation are obtained. We also get some variational identities for solutions of this equation. As consequences, we obtain some nonexistence results for this equation.