This paper addresses tensile shock physics in thermoviscoelastic (TVE) solids without memory. The mathematical model is derived using conservation and balance laws (CBL) of classical continuum mechanics (CCM), incorpo...This paper addresses tensile shock physics in thermoviscoelastic (TVE) solids without memory. The mathematical model is derived using conservation and balance laws (CBL) of classical continuum mechanics (CCM), incorporating the contravariant second Piola-Kirchhoff stress tensor, the covariant Green’s strain tensor, and its rates up to order n. This mathematical model permits the study of finite deformation and finite strain compressible deformation physics with an ordered rate dissipation mechanism. Constitutive theories are derived using conjugate pairs in entropy inequality and the representation theorem. The resulting mathematical model is both thermodynamically and mathematically consistent and has closure. The solution of the initial value problems (IVPs) describing evolutions is obtained using a variationally consistent space-time coupled finite element method, derived using space-time residual functional in which the local approximations are in hpk higher-order scalar product spaces. This permits accurate description problem physics over the discretization and also permits precise a posteriori computation of the space-time residual functional, an accurate measure of the accuracy of the computed solution. Model problem studies are presented to demonstrate tensile shock formation, propagation, reflection, and interaction. A unique feature of this research is that tensile shocks can only exist in solid matter, as their existence requires a medium to be elastic (presence of strain), which is only possible in a solid medium. In tensile shock physics, a decrease in the density of the medium caused by tensile waves leads to shock formation ahead of the wave. In contrast, in compressive shocks, an increase in density and the corresponding compressive waves result in the formation of compression shocks behind of the wave. Although these are two similar phenomena, they are inherently different in nature. To our knowledge, this work has not been reported in the published literature.展开更多
This paper presents derivation of a priori error estimates and convergence rates of finite element processes for boundary value problems (BVPs) described by self adjoint, non-self adjoint, and nonlinear differential o...This paper presents derivation of a priori error estimates and convergence rates of finite element processes for boundary value problems (BVPs) described by self adjoint, non-self adjoint, and nonlinear differential operators. A posteriori error estimates are discussed in context with local approximations in higher order scalar product spaces. A posteriori error computational framework (without the knowledge of theoretical solution) is presented for all BVPs regardless of the method of approximation employed in constructing the integral form. This enables computations of local errors as well as the global errors in the computed finite element solutions. The two most significant and essential aspects of the research presented in this paper that enable all of the features described above are: 1) ensuring variational consistency of the integral form(s) resulting from the methods of approximation for self adjoint, non-self adjoint, and nonlinear differential operators and 2) choosing local approximations for the elements of a discretization in a subspace of a higher order scalar product space that is minimally conforming, hence ensuring desired global differentiability of the approximations over the discretizations. It is shown that when the theoretical solution of a BVP is analytic, the a priori error estimate (in the asymptotic range, discussed in a later section of the paper) is independent of the method of approximation or the nature of the differential operator provided the resulting integral form is variationally consistent. Thus, the finite element processes utilizing integral forms based on different methods of approximation but resulting in VC integral forms result in the same a priori error estimate and convergence rate. It is shown that a variationally consistent (VC) integral form has best approximation property in some norm, conversely an integral form with best approximation property in some norm is variationally consistent. That is best approximation property of the integral form and the VC of the integral form is equivalent, one cannot exist without the other, hence can be used interchangeably. Dimensional model problems consisting of diffusion equation, convection-diffusion equation, and Burgers equation described by self adjoint, non-self adjoint, and nonlinear differential operators are considered to present extensive numerical studies using Galerkin method with weak form (GM/WF) and least squares process (LSP) to determine computed convergence rates of various error norms and present comparisons with the theoretical convergence rates.展开更多
Consider a multidimensional renewal risk model, in which the claim sizes {Xk, k ≥1} form a sequence of independent and identically distributed random vectors with nonnegative components that are allowed to be depende...Consider a multidimensional renewal risk model, in which the claim sizes {Xk, k ≥1} form a sequence of independent and identically distributed random vectors with nonnegative components that are allowed to be dependent on each other. The univariate marginal distributions of these vectors have consistently varying tails and finite means. Suppose that the claim sizes and inter-arrival times correspondingly form a sequence of independent and identically distributed random pairs, with each pair obeying a dependence structure. A precise large deviation for the multidimensional renewal risk model is obtained.展开更多
In this paper, we obtain the uniform estimate for discounted aggregate claims in the continuous-time renewal model of upper-tailed independent and heavy-tailed random variables. With constant interest force and consta...In this paper, we obtain the uniform estimate for discounted aggregate claims in the continuous-time renewal model of upper-tailed independent and heavy-tailed random variables. With constant interest force and constant premium rate, we establish a uniform simple asymptotic formula for ruin probability of the renewal model in the case where the initial surplus is large.展开更多
Consider a two-dimensional renewal risk model,in which the claim sizes{Xk;k≥1}form a sequence of i.i.d.copies of a non-negative random vector whose two components are dependent.Suppose that the claim sizes and inter-...Consider a two-dimensional renewal risk model,in which the claim sizes{Xk;k≥1}form a sequence of i.i.d.copies of a non-negative random vector whose two components are dependent.Suppose that the claim sizes and inter-arrival times form a sequence of i.i.d.random pairs,with each pair obeying a dependence structure via the conditional distribution of the inter-arrival time given the subsequent claim size being large.Then a precise large-deviation formula of the aggregate amount of claims is obtained.展开更多
文摘This paper addresses tensile shock physics in thermoviscoelastic (TVE) solids without memory. The mathematical model is derived using conservation and balance laws (CBL) of classical continuum mechanics (CCM), incorporating the contravariant second Piola-Kirchhoff stress tensor, the covariant Green’s strain tensor, and its rates up to order n. This mathematical model permits the study of finite deformation and finite strain compressible deformation physics with an ordered rate dissipation mechanism. Constitutive theories are derived using conjugate pairs in entropy inequality and the representation theorem. The resulting mathematical model is both thermodynamically and mathematically consistent and has closure. The solution of the initial value problems (IVPs) describing evolutions is obtained using a variationally consistent space-time coupled finite element method, derived using space-time residual functional in which the local approximations are in hpk higher-order scalar product spaces. This permits accurate description problem physics over the discretization and also permits precise a posteriori computation of the space-time residual functional, an accurate measure of the accuracy of the computed solution. Model problem studies are presented to demonstrate tensile shock formation, propagation, reflection, and interaction. A unique feature of this research is that tensile shocks can only exist in solid matter, as their existence requires a medium to be elastic (presence of strain), which is only possible in a solid medium. In tensile shock physics, a decrease in the density of the medium caused by tensile waves leads to shock formation ahead of the wave. In contrast, in compressive shocks, an increase in density and the corresponding compressive waves result in the formation of compression shocks behind of the wave. Although these are two similar phenomena, they are inherently different in nature. To our knowledge, this work has not been reported in the published literature.
文摘This paper presents derivation of a priori error estimates and convergence rates of finite element processes for boundary value problems (BVPs) described by self adjoint, non-self adjoint, and nonlinear differential operators. A posteriori error estimates are discussed in context with local approximations in higher order scalar product spaces. A posteriori error computational framework (without the knowledge of theoretical solution) is presented for all BVPs regardless of the method of approximation employed in constructing the integral form. This enables computations of local errors as well as the global errors in the computed finite element solutions. The two most significant and essential aspects of the research presented in this paper that enable all of the features described above are: 1) ensuring variational consistency of the integral form(s) resulting from the methods of approximation for self adjoint, non-self adjoint, and nonlinear differential operators and 2) choosing local approximations for the elements of a discretization in a subspace of a higher order scalar product space that is minimally conforming, hence ensuring desired global differentiability of the approximations over the discretizations. It is shown that when the theoretical solution of a BVP is analytic, the a priori error estimate (in the asymptotic range, discussed in a later section of the paper) is independent of the method of approximation or the nature of the differential operator provided the resulting integral form is variationally consistent. Thus, the finite element processes utilizing integral forms based on different methods of approximation but resulting in VC integral forms result in the same a priori error estimate and convergence rate. It is shown that a variationally consistent (VC) integral form has best approximation property in some norm, conversely an integral form with best approximation property in some norm is variationally consistent. That is best approximation property of the integral form and the VC of the integral form is equivalent, one cannot exist without the other, hence can be used interchangeably. Dimensional model problems consisting of diffusion equation, convection-diffusion equation, and Burgers equation described by self adjoint, non-self adjoint, and nonlinear differential operators are considered to present extensive numerical studies using Galerkin method with weak form (GM/WF) and least squares process (LSP) to determine computed convergence rates of various error norms and present comparisons with the theoretical convergence rates.
基金Supported by the National Natural Science Foundation of China(Nos.11571058&11301481)Humanities and Social Science Foundation of the Ministry of Education of China(No.17YJC910007)+1 种基金Zhejiang Provincial Natural Science Foundation of China(No.LY17A010004)Fundamental Research Funds for the Central Universities(No.DUT17LK31)
文摘Consider a multidimensional renewal risk model, in which the claim sizes {Xk, k ≥1} form a sequence of independent and identically distributed random vectors with nonnegative components that are allowed to be dependent on each other. The univariate marginal distributions of these vectors have consistently varying tails and finite means. Suppose that the claim sizes and inter-arrival times correspondingly form a sequence of independent and identically distributed random pairs, with each pair obeying a dependence structure. A precise large deviation for the multidimensional renewal risk model is obtained.
基金Supported by National Natural Science Foundation of China (Grant No. 10871177)Specialized Research Fund for Doctor Program of Higher Education (Grant No. 20060335032)
文摘In this paper, we obtain the uniform estimate for discounted aggregate claims in the continuous-time renewal model of upper-tailed independent and heavy-tailed random variables. With constant interest force and constant premium rate, we establish a uniform simple asymptotic formula for ruin probability of the renewal model in the case where the initial surplus is large.
基金by the National Social Science Foundation of China(No.20BTJ050).
文摘Consider a two-dimensional renewal risk model,in which the claim sizes{Xk;k≥1}form a sequence of i.i.d.copies of a non-negative random vector whose two components are dependent.Suppose that the claim sizes and inter-arrival times form a sequence of i.i.d.random pairs,with each pair obeying a dependence structure via the conditional distribution of the inter-arrival time given the subsequent claim size being large.Then a precise large-deviation formula of the aggregate amount of claims is obtained.