Changes in the vascular cylinder of wild soybean (Glycine soja Sieb. et Zucc) roots under alkaline stress were investigated in an experiment that applied 90 mmol L1 alkaline stress for 10 d at the five-trifoliate pl...Changes in the vascular cylinder of wild soybean (Glycine soja Sieb. et Zucc) roots under alkaline stress were investigated in an experiment that applied 90 mmol L1 alkaline stress for 10 d at the five-trifoliate plant growth stage in Huinan County, Jilin Province, China. Root samples were collected and paraffin-cut sections were made, and the root structure was observed under an optical microscope. There were significant changes in the vascular cylinder of G. soja roots under alkaline stress. Root diameter was reduced and the vascular cylinder changed from tetrarch to triarch pattern. Alkaline stress resulted in reduced, diameters of root vessels, and a large amount of residual, alkaline solution was stained cyaneous in vessels. The paratracheal parenchymatous cells of the vessels were large and there was little secondary xylem. Thus, alkaline stress caused structural changes in the vascular cylinder of G. soja.展开更多
基金financially supported by the National Natural Science Foundation of China(41271231)
文摘Changes in the vascular cylinder of wild soybean (Glycine soja Sieb. et Zucc) roots under alkaline stress were investigated in an experiment that applied 90 mmol L1 alkaline stress for 10 d at the five-trifoliate plant growth stage in Huinan County, Jilin Province, China. Root samples were collected and paraffin-cut sections were made, and the root structure was observed under an optical microscope. There were significant changes in the vascular cylinder of G. soja roots under alkaline stress. Root diameter was reduced and the vascular cylinder changed from tetrarch to triarch pattern. Alkaline stress resulted in reduced, diameters of root vessels, and a large amount of residual, alkaline solution was stained cyaneous in vessels. The paratracheal parenchymatous cells of the vessels were large and there was little secondary xylem. Thus, alkaline stress caused structural changes in the vascular cylinder of G. soja.