期刊文献+
共找到3,916篇文章
< 1 2 196 >
每页显示 20 50 100
Anti-vascular endothelial growth factor drugs combined with laser photocoagulation maintain retinal ganglion cell integrity in patients with diabetic macular edema: study protocol for a prospective, non-randomized, controlled clinical trial
1
作者 Xiangjun Li Chunyan Li +5 位作者 Hai Huang Dan Bai Jingyi Wang Anqi Chen Yu Gong Ying Leng 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第4期923-928,共6页
The integrity of retinal ganglion cells is tightly associated with diabetic macular degeneration that leads to damage and death of retinal ganglion cells,affecting vision.The major clinical treatments for diabetic mac... The integrity of retinal ganglion cells is tightly associated with diabetic macular degeneration that leads to damage and death of retinal ganglion cells,affecting vision.The major clinical treatments for diabetic macular edema are anti-vascular endothelial growth factor drugs and laser photocoagulation.However,although the macular thickness can be normalized with each of these two therapies used alone,the vision does not improve in many patients.This might result from the incomplete recovery of retinal ganglion cell injury.Therefore,a prospective,non-randomized,controlled clinical trial was designed to investigate the effect of anti-vascular endothelial growth factor drugs combined with laser photocoagulation on the integrity of retinal ganglion cells in patients with diabetic macular edema and its relationship with vision recovery.In this trial,150 patients with diabetic macular edema will be equally divided into three groups according to therapeutic methods,followed by treatment with anti-vascular endothelial growth factor drugs,laser photocoagulation therapy,and their combination.All patients will be followed up for 12 months.The primary outcome measure is retinal ganglion cell-inner plexiform layer thickness at 12 months after treatment.The secondary outcome measures include retinal ganglion cell-inner plexiform layer thickness before and 1,3,6,and 9 months after treatment,retinal nerve fiber layer thickness,best-corrected visual acuity,macular area thickness,and choroidal thickness before and 1,3,6,9,and 12 months after treatment.Safety measure is the incidence of adverse events at 1,3,6,9,and 12 months after treatment.The study protocol hopes to validate the better efficacy and safety of the combined treatment in patients with diabetic macula compared with the other two monotherapies alone during the 12-month follow-up period.The trial is designed to focus on clarifying the time-effect relationship between imaging measures related to the integrity of retinal ganglion cells and best-corrected visual acuity.The trial protocol was approved by the Medical Ethics Committee of the Affiliated Hospital of Beihua University with approval No.(2023)(26)on April 25,2023,and was registered with the Chinese Clinical Trial Registry(registration number:ChiCTR2300072478,June 14,2023,protocol version:2.0). 展开更多
关键词 choroidal thickness diabetic macular edema laser photocoagulation retinal ganglion cell-inner plexiform layer thickness retinal ganglion cells retinal nerve fiber layer thickness thickness of the macular area vascular endothelial growth factor visual acuity
下载PDF
Early expressions of hypoxia-inducible factor 1alpha and vascular endothelial growth factor increase the neuronal plasticity of activated endogenous neural stem cells after focal cerebral ischemia 被引量:18
2
作者 Seung Song Jong-Tae Park +4 位作者 Joo Young Na Man-Seok Park Jeong-Kil Lee Min-Cheol Lee Hyung-Seok Kim 《Neural Regeneration Research》 SCIE CAS CSCD 2014年第9期912-918,共7页
Endogenous neural stem cells become "activated" after neuronal injury, but the activation sequence and fate of endogenous neural stem cells in focal cerebral ischemia model are little known. We evaluated the relatio... Endogenous neural stem cells become "activated" after neuronal injury, but the activation sequence and fate of endogenous neural stem cells in focal cerebral ischemia model are little known. We evaluated the relationships between neural stem cells and hypoxia-inducible factor-1α and vascular endothelial growth factor expression in a photothromobotic rat stroke model using immunohistochemistry and western blot analysis. We also evaluated the chronological changes of neural stem cells by 5-bromo-2′-deoxyuridine(BrdU) incorporation. Hypoxia-inducible factor-1α expression was initially increased from 1 hour after ischemic injury, followed by vascular endothelial growth factor expression. Hypoxia-inducible factor-1α immunoreactivity was detected in the ipsilateral cortical neurons of the infarct core and peri-infarct area. Vascular endothelial growth factor immunoreactivity was detected in bilateral cortex, but ipsilateral cortex staining intensity and numbers were greater than the contralateral cortex. Vascular endothelial growth factor immunoreactive cells were easily found along the peri-infarct area 12 hours after focal cerebral ischemia. The expression of nestin increased throughout the microvasculature in the ischemic core and the peri-infarct area in all experimental rats after 24 hours of ischemic injury. Nestin immunoreactivity increased in the subventricular zone during 12 hours to 3 days, and prominently increased in the ipsilateral cortex between 3–7 days. Nestin-labeled cells showed dual differentiation with microvessels near the infarct core and reactive astrocytes in the peri-infarct area. BrdU-labeled cells were increased gradually from day 1 in the ipsilateral subventricular zone and cortex, and numerous BrdU-labeled cells were observed in the peri-infarct area and non-lesioned cortex at 3 days. BrdU-labeled cells rather than neurons, were mainly co-labeled with nestin and GFAP. Early expressions of hypoxia-inducible factor-1α and vascular endothelial growth factor after ischemia made up the microenvironment to increase the neuronal plasticity of activated endogenous neural stem cells. Moreover, neural precursor cells after large-scale cortical injury could be recruited from the cortex nearby infarct core and subventricular zone. 展开更多
关键词 nerve regeneration brain ischemia neural stem cell neural precursor cell hypoxia-inducible factor vascular endothelial growth factor MICROENVIRONMENT PHOTOTHROMBOSIS neural regeneration
下载PDF
Vascular endothelial growth factor A, secreted in response to transforming growth factor-β1 under hypoxic conditions, induces autocrine effects on migration of prostate cancer cells 被引量:20
3
作者 Eric Darrington Miao Zhong Bao-Han Vo Shafiq A Khan 《Asian Journal of Andrology》 SCIE CAS CSCD 2012年第5期745-751,共7页
Hypoxia and transforming growth factor-β1 (TGF-β1) increase vascular endothelial growth factor A (VEGFA) expression in a number of malignancies. This effect of hypoxia and TGF-β1 might be responsible for tumor ... Hypoxia and transforming growth factor-β1 (TGF-β1) increase vascular endothelial growth factor A (VEGFA) expression in a number of malignancies. This effect of hypoxia and TGF-β1 might be responsible for tumor progression and metastasis of advanced prostate cancer. In the present study, TGF-β1 was shown to induce VEGFA165 secretion from both normal cell lines (HPV7 and RWPE1) and prostate cancer cell lines (DU 145 and PC3). Conversely, hypoxia-stimulated VEGFA165 secretion was observed only in prostate cancer cell lines. Hypoxia induced TGF-β1 expression in PC3 prostate cancer cells, and the TGF-β1 type I receptor (ALK5) kinase inhibitor partially blocked hypoxia-mediated VEGFA16s secretion. This effect of hypoxia provides a novel mechanism to increase VEGFA expression in prostate cancer cells. Although autocrine signaling of VEGFA has been implicated in prostate cancer progression and metastasis, the associated mechanism is poorly characterized. VEGFA activity is mediated via VEGF receptor (VEGFR) 1 (Fit-l) and 2 (FIk-I/KDR). Whereas VEGFR-1 mRNA was detected in normal prostate epithelial cells, VEGFR-2 mRNA and VEGFR protein were expressed only in PC3 cells. VEGFA165 treatment induced phosphorylation of extracellular signal-regulated kinase 1/2 (ERKI/2) in PC3 cells but not in HPV7 cells, suggesting that the autocrine function of VEGFA may be uniquely associated with prostate cancer. Activation of VEGFR-2 by VEGFA165 was shown to enhance migration of PC3 cells. A similar effect was also observed with endogenous VEGFA induced by TGF-β1 and hypoxia. These findings illustrate that an autocrine loop of VEGFA via VEGFR-2 is critical for the tumorigenic effects of TGF-β1 and hypoxia on metastatic prostate cancers. 展开更多
关键词 cell migration HYPOXIA prostate cancer transforming growth factor-β1 (TGF-β1) vascular endothelial growth factor A(VEGFA)
下载PDF
Reduction of tumorigenicity of SMMC-7721 hepatoma cells by vascular endothelial growth factor antisense gene therapy 被引量:33
4
作者 Yu Cheng Tang Yu Li Guan Xiang Qian Department of Biochemistry, Shanghai Second Medical University, Shanghai 200025, China 《World Journal of Gastroenterology》 SCIE CAS CSCD 2001年第1期22-27,共6页
AIM: To test the hypothesis to block VEGF expression of SMMC-7721 hepatoma cells may inhibit tumor growth using the rat hepatoma model. METHODS: Amplify the 200 VEGF cDNA fragment and insert it into human U6 gene cass... AIM: To test the hypothesis to block VEGF expression of SMMC-7721 hepatoma cells may inhibit tumor growth using the rat hepatoma model. METHODS: Amplify the 200 VEGF cDNA fragment and insert it into human U6 gene cassette in the reverse orientation transcribing small antisense RNA which could specifically interact with VEGF165, and VEGF121 mRNA. Construct the retroviral vector containing this antisense VEGF U6 cassette and package the replication-deficient recombinant retrovirus. SMMC-7721 cells were transduced with these virus and positive clones were selected with G418. PCR and Southern blot analysis were performed to determine if U6 cassette integrated into the genomic DNA of positive clone. Transfected tumor cells were evaluated for RNA expression by ribonuclease protection assays. The VEGF protein in the supernatant of parental tumor cells and genetically modified tumor cells was determined with ELISA. In vitro and in vivo growth properties of antisense VEGF cell clone in nude mice were analyzed. RESULTS: Restriction enzyme digestion and PCR sequencing verified that the antisense VEGF RNA retroviral vector was successfully constructed.After G418 selection, resistant SMMC-7721 cell clone was picked up. PCR and Southern blot analysis suggested that U6 cassette was integrated into the cell genomic DNA. Stable SMMC-7721 cell clone transduced with U6 antisense RNA cassette could express 200 bp small antisense VEGF RNA and secrete reduced levels of VEGF in culture condition. Production of VEGF by antisense transgene-expressing cells was 65+/-10 ng/L per 10(6) cells, 42045 ng/L per 10(6) cells in sense group and 485+/-30 ng/L per 10(6) cells in the negative control group, (P【 0.05). The antisense-VEGF cell clone appeared phenotypically indistinguishable from SMMC-7721 cells and SMMC-7721 cells transfected sense VEGF. The growth rate of the antisense-VEGF cell clone was the same as the control cells. When S.C. was implanted into nude mice, growth of antisense-VEGF cell lines was greatly inhibited compared with control cells. CONCLUSION: Expression of antisense VEGF RNA in SMMC-7721 cells could decrease the tumorigenicity, and antisense-VEGF gene therapy may be an adjuvant treatment for hepatoma. 展开更多
关键词 Gene Therapy Animals Carcinoma Hepatocellular cell Division DNA Polymerase III Endothelial growth factors Endothelium vascular Enzyme-Linked Immunosorbent Assay Gene Expression Humans Liver Neoplasms LYMPHOKINES MICE Mice Nude Neovascularization Pathologic Promoter Regions (Genetics) RNA Antisense Research Support Non-U.S. Gov't Transduction Genetic Tumor cells Cultured vascular Endothelial growth factor A vascular Endothelial growth factors
下载PDF
Effect of Fuzhenghuayu decoction on vascular endothelial growth factor secretion in hepatic stellate cells 被引量:19
5
作者 Cheng Liu Cun-Meng Jiang +2 位作者 Cheng-Hai Liu Ping Liu Yi-Yang Hu From the Institute of Liver Diseases and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China 《Hepatobiliary & Pancreatic Diseases International》 SCIE CAS 2002年第2期207-210,共4页
Objective: To investigate the effect of Fuzhenghuayu decoction on autocrine activation of hepatic stellate cell (HSC). Methods: The drug serum containing Fuzhenghuayu decoction was collected from normal rats, and cul-... Objective: To investigate the effect of Fuzhenghuayu decoction on autocrine activation of hepatic stellate cell (HSC). Methods: The drug serum containing Fuzhenghuayu decoction was collected from normal rats, and cul- tured with activated HSC in vitro. The conditioned medium from the drug serum treated HSC was added to primary cultured quiescent HSC. Cell prolifera- tion was assayed by tetrazolium colorimetric test, and the contents of type Ⅰ collagen and vascular endo- thelial growth factor (VEGF) in the supernatant were measured with ELISA. Results: The conditioned medium from activated HSC could stimulate the quiescent HSC proliferation and type Ⅰ collagen secretion. The drug serum inhibi- ted this stimulating action and VEGF secretion from the activated HSC. Conclusion: Fuzhenghuayu decoction acts effectively against the autocrine activation pathway of HSC. The mechanism may be associated with the inhibition of the secretion of VEGF by activated HSC. 展开更多
关键词 hepatic fibrosis type I collagen hepatic stellate cell Fuzhenghuayu decoction vascular endothelial growth factor AUTOCRINE
下载PDF
Transplantation of vascular endothelial growth factor-modified neural stem/progenitor cells promotes the recovery of neurological function following hypoxic-ischemic brain damage 被引量:12
6
作者 Yue Yao Xiang-rong Zheng +4 位作者 Shan-shan Zhang Xia Wang Xiao-he Yu Jie-lu Tan Yu-jia Yang 《Neural Regeneration Research》 SCIE CAS CSCD 2016年第9期1456-1463,共8页
Neural stem/progenitor cell (NSC) transplantation has been shown to effectively improve neurological function in rats with hypoxic-isch- emic brain damage. Vascular endothelial growth factor (VEGF) is a signaling ... Neural stem/progenitor cell (NSC) transplantation has been shown to effectively improve neurological function in rats with hypoxic-isch- emic brain damage. Vascular endothelial growth factor (VEGF) is a signaling protein that stimulates angiogenesis and improves neural regeneration. We hypothesized that transplantation of VEGF-transfected NSCs would alleviate hypoxic-ischemic brain damage in neo- natal rats. We produced and transfected a recombinant lentiviral vector containing the VEGF165gene into cultured NSCs. The transfected NSCs were transplanted into the left sensorimotor cortex of rats 3 days after hypoxic-ischemic brain damage. Compared with the NSCs group, VEGF mRNA and protein expression levels were increased in the transgene NSCs group, and learning and memory abilities were significantly improved at 30 days. Furthermore, histopathological changes were alleviated in these animals. Our findings indicate that transplantation of VEGF-transfected NSCs may facilitate the recovery of neurological function, and that its therapeutic effectiveness is better than that of unmodified NSCs. 展开更多
关键词 nerve regeneration vascular endothelial growth factor TRANSFECTION neural stem/progenitor cells TRANSPLANTATION hypoxic-ischemicbrain damage cerebral cortex animal model NEUROPROTECTION neural regeneration
下载PDF
Apelin and vascular endothelial growth factor are associated with mobilization of endothelial progenitor cells after acute myocardial infarction 被引量:16
7
作者 Jiaxin Ye Ping Ni +1 位作者 Lina Kang Biao Xu 《The Journal of Biomedical Research》 CAS 2012年第6期400-409,共10页
This study was designed to determine the levels of early endothelial progenitor cells (EPCs), apelin, vascu- lar endothelial growth factor (VEGF) and stromal cell-derived growth factor-1 (SDF-1) after acute myoc... This study was designed to determine the levels of early endothelial progenitor cells (EPCs), apelin, vascu- lar endothelial growth factor (VEGF) and stromal cell-derived growth factor-1 (SDF-1) after acute myocardial infarction (AMI), and to investigate the relationships between these cytokines and early EPCs. Early EPCs, de- fined as CD133+, KDR+, and CD34~ cells, were quantified by flow cytometry. The levels of early EPCs and those cytokines in AMI patients were significantly different from those with coronary artery disease or controls (P 〈 0.05). Plasma apelin levels were inversely correlated with Gensini score and early EPCs (both P 〈 0.01). Early EPCs, VEGF and SDF-1 showed different patterns of changes in AMI patients during the first 24 h. The trend in the change of early EPCs was proportionally correlated with that of VEGF (P 〈 0.05). AMI patients exhibited in- creased early EPCs with remarkably decreased apelin levels and enhanced VEGF levels. 展开更多
关键词 APELIN vascular endothelial growth factor (VEGF) stromal cell-derived growth factor-1 (SDF-1) endothelial progenitor cells (EPCs)
下载PDF
Expression of thymidine kinase mediated by a novel non-viral delivery system under the control of vascular endothelial growth factor receptor 2 promoter selectively kills human umbilical vein endothelial cells 被引量:9
8
作者 Ying Wang Hui-Xiong Xu +1 位作者 Ming-De Lu Qing Tang 《World Journal of Gastroenterology》 SCIE CAS CSCD 2008年第2期224-230,共7页
AIM: To investigate the killing efficiency of a recombinant plasmid containing a thymidine kinase (TK) domain insert driven by the vascular endothelial growth factor receptor 2 (VEGFR2) promoter (KDR) on vascular endo... AIM: To investigate the killing efficiency of a recombinant plasmid containing a thymidine kinase (TK) domain insert driven by the vascular endothelial growth factor receptor 2 (VEGFR2) promoter (KDR) on vascular endothelial cells.METHODS: The KDR-TK fragment was extracted from pBluescript Ⅱ KDR-TK plasmid by enzymatic digestion with Xho I and Sal I. The enhanced green fluorescence protein (EGFP) carrier was extracted from pEGFP by the same procedure. The KDR-TK was inserted into the pEGFP carrier to construct pEGFP-KDR-TK. Using ultrasound irradiation and microbubble, pEGFP-KDR-TK was transferred into human umbilical vein endothelial cells (HUVECs). The transient infection rate was estimated by green fluorescent protein (GFP) expression. Transfected HUVECs, non-transfected HUVECs, and HepG2 cells were cultured in the presence of different concentrations of ganciclovir (GCV), and the killing efficacy of HSV-TK/GCV was analyzed by 3-[4, 5-dimethylthiazol-2-yl]-2, 5-diphenyl tetrazolium bromide (MTT) assay. RESULTS: The recombinant pEGFP-KDR-TK was successfully constructed by inserting the KDR-TK fragment into the pEGFP carrier. Transfected HUVECs showed cytoplasmic green fluorescence, and the transient transfection rate was about 20.3%. Pools of G418-resistant cells exhibited a higher sensitivity to theprodrug/GCV compared to non-transfected HUVECs or non-transfected HepG2 cells, respectively. CONCLUSION: KDR promoter and the suicide gene/prodrug system mediated by diagnostic ultrasound combined with microbubble can significantly kill HUVECs. Such therapy may present a novel and attractive approach to target gene therapy on tumor vessels. 展开更多
关键词 MICROBUBBLE ULTRASOUND Gene therapy vascular endothelial growth factor receptor 2 Humanumbilical vein endothelial cells
下载PDF
Response of the sensorimotor cortex of cerebral palsy rats receiving transplantation of vascular endothelial growth factor 165-transfected neural stem cells 被引量:4
9
作者 Jielu Tan Xiangrong Zheng +4 位作者 Shanshan Zhang Yujia Yang Xia Wang Xiaohe Yu Le Zhong 《Neural Regeneration Research》 SCIE CAS CSCD 2014年第19期1763-1769,共7页
Neural stem cells are characterized by the ability to differentiate and stably express exogenous ge- nes. Vascular endothelial growth factor plays a role in protecting local blood vessels and neurons of newborn rats w... Neural stem cells are characterized by the ability to differentiate and stably express exogenous ge- nes. Vascular endothelial growth factor plays a role in protecting local blood vessels and neurons of newborn rats with hypoxic-ischemic encephalopathy. Transplantation of vascular endothelial growth factor-transfected neural stem cells may be neuroprotective in rats with cerebral palsy. In this study, 7-day-old Sprague-Dawley rats were divided into five groups: (1) sham operation (control), (2) cerebral palsy model alone or with (3) phosphate-buffered saline, (4) vascular en- dothelial growth factor 165 + neural stem cells, or (5) neural stem cells alone. The cerebral palsy model was established by ligating the left common carotid artery followed by exposure to hypox- ia. Phosphate-buffered saline, vascular endothelial growth factor + neural stem cells, and neural stem cells alone were administered into the sensorimotor cortex using the stereotaxic instrument and microsyringe. After transplantation, the radial-arm water maze test and holding test were performed. Immunohistochemistry for vascular endothelial growth factor and histology using hematoxylin-eosin were performed on cerebral cortex. Results revealed that the number of vas- cular endothelial growth factor-positive cells in cerebral palsy rats transplanted with vascular endothelial growth factor-transfected neural stem cells was increased, the time for finding water and the finding repetitions were reduced, the holding time was prolonged, and the degree of cell degeneration or necrosis was reduced. These findings indicate that the transplantation of vascu- lar endothelial growth factor-transfected neural stem cells alleviates brain damage and cognitive deficits, and is neuroprotective in neonatal rats with hypoxia ischemic-mediated cerebral palsy. 展开更多
关键词 nerve regeneration vascular endothelial growth factor neural stem cells cerebral palsy animal model TRANSPLANTATION NEUROPROTECTION NSFC grant neural regeneration
下载PDF
Overexpression of vascular endothelial growth factor enhances the neuroprotective effects of bone marrow mesenchymal stem cell transplantation in ischemic stroke 被引量:6
10
作者 Cui Liu Zhi-Xiang Yang +6 位作者 Si-Qi Zhou Ding Ding Yu-Ting Hu Hong-Ning Yang Dong Han Shu-Qun Hu Xue-Mei Zong 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第6期1286-1292,共7页
Although bone marrow mesenchymal stem cells(BMSCs)might have therapeutic potency in ischemic stroke,the benefits are limited.The current study investigated the effects of BMSCs engineered to overexpress vascular endot... Although bone marrow mesenchymal stem cells(BMSCs)might have therapeutic potency in ischemic stroke,the benefits are limited.The current study investigated the effects of BMSCs engineered to overexpress vascular endothelial growth factor(VEGF)on behavioral defects in a rat model of transient cerebral ischemia,which was induced by middle cerebral artery occlusion.VEGF-BMSCs or control grafts were injected into the left striatum of the infarcted hemisphere 24 hours after stroke.We found that compared with the stroke-only group and the vehicle-and BMSCs-control groups,the VEGF-BMSCs treated animals displayed the largest benefits,as evidenced by attenuated behavioral defects and smaller infarct volume 7 days after stroke.Additionally,VEGF-BMSCs greatly inhibited destruction of the blood-brain barrier,increased the regeneration of blood vessels in the region of ischemic penumbra,and reducedneuronal degeneration surrounding the infarct core.Further mechanistic studies showed that among all transplant groups,VEGF-BMSCs transplantation induced the highest level of brain-derived neurotrophic factor.These results suggest that BMSCs transplantation with vascular endothelial growth factor has the potential to treat ischemic stroke with better results than are currently available. 展开更多
关键词 bone marrow mesenchymal stem cell brain-derived neurotrophic factor CD31 microtubule associated protein 2 middle cerebral artery occlusion stroke transplantation vascular endothelial growth factor
下载PDF
Effects of Vascular Endothelial Cell Growth Factor on Fibrovascular Ingrowth into Rabbit's Hydroxyapatite Orbital Implant 被引量:3
11
作者 张虹 李贵刚 +5 位作者 纪彩霓 何花 王军明 胡维琨 吴华 陈憬 《Journal of Huazhong University of Science and Technology(Medical Sciences)》 SCIE CAS 2004年第3期286-288,共3页
Summary: The effects of different concentrations of vascular endothelial cell growth factor (VEGF) on the fibrovascular ingrowth into rabbits hydroxyapatite orbital implant were investigated. Twelve New Zealand white ... Summary: The effects of different concentrations of vascular endothelial cell growth factor (VEGF) on the fibrovascular ingrowth into rabbits hydroxyapatite orbital implant were investigated. Twelve New Zealand white rabbits were divided into 3 groups and received hydroxyapatite orbital implant surgery in their right eyes. Before and after the operation, the implants were treated with 10 ng/ml VEGF, 100 ng/ml VEGF, or normal saline as control group. The animals received technetium bones scan at 2, 4, and 6 weeks postoperatively. The mean radioactivity counts within region of interest (ROI) of the surgery eye (R) and the non-surgery eye (L) in the same animal were tested, and the R/L ratios were calculated. The implants were harvested at 6th weeks and examined histopathologically. The results showed that at second week, there was no significant difference in mean R/L ratios between VEGF group and control group (F=2.83, P=0.111); At 4th week (F=7.728, P=0.011) and 6th week (F=7.831, P=0.011) postoperatively, the mean ratios in VEGF groups were significantly higher than that in control group. At 6th week postoperatively, the fibrovascularization rates in VEGF groups were higher than in control group significantly (F=8.711, P=0.008). It was suggested that VEGF could promote the fibrovascular ingrowth into hydroxyapatite orbital implant, thus might shorten the time required for complete vascularization of the HA orbital implant. 展开更多
关键词 vascular endothelial cell growth factor HYDROXYAPATITE orbital implants vascularIZATION
下载PDF
Effects of bone marrow-derived mesenchymal stemcells engraftment on vascular endothelial cell growthfactor in lung tissue and plasma at early stage of smoke inhalation injury 被引量:5
12
作者 FengZhu Guang-hua Guo +1 位作者 Wen Chen Nian-yun Wang 《World Journal of Emergency Medicine》 SCIE CAS 2010年第3期224-228,共5页
BACKGROUND: This study was undertaken to determine the effect of mesenchymal stem cells (MSCs) engraftment on vascular endothelial cell growth factor (VEGF) in lung tissue, plasma and extravascular lung water at... BACKGROUND: This study was undertaken to determine the effect of mesenchymal stem cells (MSCs) engraftment on vascular endothelial cell growth factor (VEGF) in lung tissue, plasma and extravascular lung water at early stage of smoke inhalation injury.METHODS: A rabbit smoke inhalation injury model was established using a home-made smoke inhalation injury generator, and rabbits were divided into two groups randomly: a control group (S group, n=32) and a MSCs treatment group (M group, n=32). 10 ml PBS was injected via the ear marginal vein immediately at injury into the S group. Third generation MSCs with a concentration of 1×107/10 ml PBS were injected via the ear marginal vein immediately at injury into the M group. VEGF in peripheral blood and lung tissue were measured at 0 (baseline), 2, 4 and 6 hours after injection respectively and analyzed. The right lungs of rabbits were taken to measure lung water mass fraction.RESULTS: In the lung tissue, VEGF decreased gradually in the S group (P〈0.05) and signi? cantly decreased in the M group (P〈0.05), but it increased more signi? cantly than the values at the corresponding time points (P〈0.05). In peripheral blood, VEGF increased gradually in the S group (P〈0.05) and markedly increased in the M group (P〈0.05), but it decreased more signi? cantly than the values at corresponding time points (P〈0.05).CONCLUSION: MSCs engraftment to smoke inhalation injury could increase VEGF in lung tissue, decrease VEGF in plasma and reduce extravascular lung water, indicating its protective effect on smoke inhalation injury. 展开更多
关键词 Mesenchymal stem cells Smoke inhalation injury vascular endothelial cell growth factor Extravascular lung water Rabbit
下载PDF
Effect of luteolin on apoptosis and vascular endothelial growth factor in human choroidal melanoma cells 被引量:4
13
作者 Meng-Lin Shi Yu-Fen Chen Hong-Fei Liao 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2021年第2期186-193,共8页
AIM:To investigate the effects of luteolin on apoptosis,the cell cycle,and the expression and secretion of vascular endothelial growth factor(VEGF)in human choroidal melanoma cells(C918 and OCM-1).METHODS:C918 and OCM... AIM:To investigate the effects of luteolin on apoptosis,the cell cycle,and the expression and secretion of vascular endothelial growth factor(VEGF)in human choroidal melanoma cells(C918 and OCM-1).METHODS:C918 and OCM-1 cells cultured in vitro were treated with various concentrations of luteolin(0,5,10,15μmol/L).Cell growth was observed with an inverted microscope,and cell cycle arrest was detected by propidium iodide(PI)staining using flow cytometry.Apoptosis was detected by Hoechst33342 staining,and apoptosis rate was determined by Annexin V-FITC/PI experiments using flow cytometry.The expression of apoptosis-related proteins Bcl-2,Bax and VEGF was analyzed using Western blots.The levels of VEGF secreted by the cells into the supernatant was analyzed using ELISA.RESULTS:After treating with 5 to 15μmol/L luteolin for 48 h,the fusion degree of C918 and OCM-1 cells decreased,and more floating apoptotic cells appeared.Luteolin treatment increased the G0-G1 phase ratio of the C918 and OCM-1 cells,blocked cell cycle progression,and increased the apoptosis rate of the C918 and OCM-1 cells.Western blot showed that luteolin decreased the expression of Bcl-2 and VEGF in the C918 and OCM-1 cells and increased the expression of Bax protein.The ELISA results showed that 10 to 15μmol/L luteolin decreased the cell secretion of VEGF.CONCLUSION:Luteolin may induce apoptosis by regulating the levels of apoptosis-related proteins in C918 and OCM-1 cells.Luteolin can induce cell cycle arrest,decrease the expression of VEGF. 展开更多
关键词 LUTEOLIN human choroidal melanoma cells APOPTOSIS cell cycle vascular endothelial growth factor
下载PDF
Resveratrol Inhibits the Secretion of Vascular Endothelial Growth Factor and Subsequent Proliferation in Human Leukemia U937 Cells 被引量:2
14
作者 唐泽海 刘新月 邹萍 《Journal of Huazhong University of Science and Technology(Medical Sciences)》 SCIE CAS 2007年第5期508-512,共5页
This study examined the effect of resveratrol on the secretion of vascular endothelial growth factor (VEGF) and subsequent proliferation of human leukemia U937 cells, and explored the mechanisms involved. Human leuk... This study examined the effect of resveratrol on the secretion of vascular endothelial growth factor (VEGF) and subsequent proliferation of human leukemia U937 cells, and explored the mechanisms involved. Human leukemia U937 cells were treated with resveratrol of different concentrations (12.5-200 μmol/L) for different time lengths (12-48 h). The proliferation of the U937 leukemic cells was determined by MTT assay. Apoptosis was observed by Annexin- V-FIFC/PI double staining and flow cytometry (FCM). Cells cycle was analyzed by PI staining and FCM. The content of VEGF was determined by ELISA. Human umbibical vein endothelial cells were examined for vasoformation in vitro after exposures to resveratrol of various concetrations. The results showed that resveratrol inhibited the proliferation of U937 leukemia cells in a dose- and time-dependent manner. Resveratrol induced apoptosis and S-phase cell cycle arrest in human leukemic U937 cells. Resveratrol inhibited the secretion of VEGF in U937 cells. Resveratrol inhibited the vasoformation of human vein endothelial cells in a dose-dependent manner. It was concluded that resveratrol could down-regulate the secretion of VEGE induce apoptosis and suppress the proliferation of U937 cells. 展开更多
关键词 RESVERATROL vascular endothelial growth factor cell proliferation U937 leukemia cells
下载PDF
Vascular Endothelial Growth Factorl65-regulated Nasopharyngeal Carcinoma Cell Lines Invasion and Migration Involve Expression and Activation of Matrix Metalloproteinase-2 被引量:2
15
作者 王彦君 孔维佳 +5 位作者 乐建新 孙大为 李伟 姚琪 孙宇 董继华 《Journal of Huazhong University of Science and Technology(Medical Sciences)》 SCIE CAS 2006年第5期621-624,共4页
The effect of vascular endothelial growth factor (VEGF) overexpression on matrix metalloproteinase-2 (MMP-2) in nasopharyngeal carcinoma (NPC) cells in vitro and the possible mechanism involved were investigated... The effect of vascular endothelial growth factor (VEGF) overexpression on matrix metalloproteinase-2 (MMP-2) in nasopharyngeal carcinoma (NPC) cells in vitro and the possible mechanism involved were investigated, and the correlation between the expression of VEGF and MMP-2 in NPC evaluated. The NPC cells were transfected with PAd-trackVEGF165 plasmid. The expression levels of VEGF and MMP-2 mRNA and protein in NPC cells were detected by semi-quantitative RT-PCR and Western blot respectively. It was found that the expression of VEGF and MMP-2 mRNA and protein was significantly increased in NPC cells after transfection of VEGF 165. It was concluded that the expression of VEGF was correlated to the in vitro invasion of NPC cells, and the induction of MMP-2 by VEGF was a key process of NPC cell invasion. 展开更多
关键词 nasopharyngeal carcinoma cells vascular endothelial growth factor matrix metalloproteinase-2 gene transfection
下载PDF
Effects of Meloxicam on Vascular Endothelial Growth Factor and Angiopoietin-2 Expression in Colon Carcinoma Cell Line HT-29 被引量:2
16
作者 张宁 陶凯雄 黄韬 《Journal of Huazhong University of Science and Technology(Medical Sciences)》 SCIE CAS 2007年第4期399-402,共4页
To investigate the effect of meloxicam, a selected NSAIDs, on cell growth, expression of VEGF and angiopointin-2 (Ang-2) protein in HT-29 cell line, cultured HT-29 cells were treated with meloxicam of various concen... To investigate the effect of meloxicam, a selected NSAIDs, on cell growth, expression of VEGF and angiopointin-2 (Ang-2) protein in HT-29 cell line, cultured HT-29 cells were treated with meloxicam of various concentrations for various lengths of time. The proliferation of HT-29 was detected by cell counting kit-8 (CCK-8), the cell cycle was determined by flow cytometer and the levels of VEGF and Ang-2 protein in supernatants were examined by enzyme linked immunosorbent assay (ELISA). The mRNA expressions of VEGF and Ang-2 in cultured HT-29 were determined by real-time quantitative reverse-transcription polymerase chain reaction. Our results showed that treatment of meloxicam of different concentrations and for various lengths of time had a cytotoxicic effect on the cell proliferation of HT-29 cells in a concentration-dependant and time-dependant manner. Cell cycle analysis showed that the cells were mainly blocked in G0/G1 phase. The VEGF and Ang-2 protein levels in supernatants of the culture medium were decreased gradually in a concentration-dependent or time-dependent fashion. The mRNA expression of cox-2, VEGF and Ang-2 showed a gradual and concentration-dependent reduction. It is concluded that meloxicam can reduce the expression of VEGF and Ang-2 at the protein and mRNA level in colon carcinoma cell line. 展开更多
关键词 MELOXICAM colon carcinoma cell line vascular endothelial growth factor ANGIOPOIETIN-2
下载PDF
Vascular endothelial growth factor 165b expression in stromal cells and colorectal cancer 被引量:10
17
作者 Makoto Tayama Tomohisa Furuhata +5 位作者 Yoshiko Inafuku Kenji Okita Toshihiko Nishidate Toru Mizuguchi Yasutoshi Kimura Koichi Hirata 《World Journal of Gastroenterology》 SCIE CAS CSCD 2011年第44期4867-4874,共8页
AIM:To characterize the implications of vascular endothelial growth factor(VEGF)-A in stromal cells and colorectal cancer and the expression of VEGF-A splice variants.METHODS:VEGF-A expression in tumor and stromal cel... AIM:To characterize the implications of vascular endothelial growth factor(VEGF)-A in stromal cells and colorectal cancer and the expression of VEGF-A splice variants.METHODS:VEGF-A expression in tumor and stromal cells from 165 consecutive patients with colorectal cancer was examined by immunohistochemistry.The association between VEGF-A expression status and clinicopathological factors was investigated.Twenty freshfrozen samples were obtained for laser capture microdissection to analyze the splice variants of VEGF-A.RESULTS:VEGF-A was expressed in 53.9% and 42.4% of tumor and stromal cells,respectively.VEGF-A expression in tumor cells(t-VEGF-A) was associated with advanced clinical stage(stage 0,1/9;stage 1,2/16;stage 2,32/55;stage 3,38/66;stage 4,16/19,P < 0.0001).VEGF-A expression in stromal cells(s-VEGF-A) increased in the earlier clinical stage(stage 0,7/9;stage 1,6/16;stage 2,33/55;stage 3,22/66;stage 4,5/19;P = 0.004).Multivariate analyses for risk factors of recurrence showed that only s-VEGF-A expression was an independent risk factor for recurrence(relative risk 0.309,95% confidence interval 0.141-0.676,P = 0.0033).The five-year disease-free survival(DFS) rates of t-VEGF-A-positive and-negative cases were 51.4% and 62.9%,respectively.There was no significant difference in t-VEGF-A expression status.The five-year DFS rates of s-VEGF-A-positive and-negative cases were 73.8% and 39.9%,respectively.s-VEGFA-positive cases had significantly better survival than s-VEGF-A-negative cases(P = 0.0005).Splice variant analysis revealed that t-VEGF-A was mainly composed of VEGF165 and that s-VEGF-A included both VEGF165 and VEGF165b.In cases with no venous invasion(v0),the level of VEGF165b mRNA was significantly higher(v0 204.5 ± 122.7,v1 32.5 ± 36.7,v2 2.1 ± 1.7,P = 0.03).The microvessel density tended to be lower in cases with higher VEGF165b mRNA levels.CONCLUSION:s-VEGF-A appears be a good prognostic factor for colorectal cancer and includes VEGF165 and VEGF165b. 展开更多
关键词 Colorectal cancer vascular endothelial growth factor-A vascular endothelial growth factor 165 Microvascular density Stromal cell
下载PDF
Vascular endothelial growth factor/platelet-derived growth factor receptor pathway is involved in bone marrow mesenchymal stem cell differentiation and directional migration toward gliomas 被引量:1
18
作者 Chaoshi Niu Yongfei Dong Ge Gao 《Neural Regeneration Research》 SCIE CAS CSCD 2010年第13期993-998,共6页
BACKGROUND: Vascular endothelial growth factor (VEGF) induces bone marrow-derived mesenchymal stem cell (BMSC) differentiation into vascular endothelial-like cells and promotes BMSC migration toward gliomas. Howe... BACKGROUND: Vascular endothelial growth factor (VEGF) induces bone marrow-derived mesenchymal stem cell (BMSC) differentiation into vascular endothelial-like cells and promotes BMSC migration toward gliomas. However, the molecular mechanisms by which VEGF induces BMSC differentiation and migration remain poorly understood. OBJECTIVE; To investigate the role of platelet-derived growth factor (PDGF) receptor (PDGFR) in BMSC differentiation and migration induced by VEGE DESIGN, TIME AND SETTING: A parallel, controlled, in vitro experiment was performed at the Molecular Neurobiology & Neural Regeneration and Repairing Laboratory, Anhui Provincial Hospital of Anhui Medical University, China from June 2008 to March 2009. MATERIALS: U87 glioma cells were purchased from Shanghai Institutes for Biological Sciences; mouse anti-human PDGFR and VEGF receptor (VEGFR) monoclonal antibodies were purchased from Peprotech, USA. METHODS: Isolated BMSCs were precultured with neutralizing antibody for VEGFR-1, VEGFR-2, PDGFR-α, and PDGFR-β to block biological activity of related receptors, followed by induced differentiation with 50μg/L VEGF. BMSCs induced with 50μg/L VEGF alone served as the VEGF-induced group. The control group remained untreated. MAIN OUTCOME MEASURES: Cell surface markers were identified by flow cytometry; BMSC surface cytokine receptor expression was detected by reverse transcription-polymerase chain reaction; the Transwell model was used to observe cell migration. RESULTS: After blocking the PDGFR, VEGF did not induce BMSC cell surface marker CD-31 or von Willebrand factor (vWF) expression. However, inhibition with VEGF receptor blocking agents, VEGF induced BMSCs to express CD-31 and vWE Following inhibition of the PDGFR, the number of cells migrating through the polycarbonate membrane Transwell chamber was decreased, as well as the number of BMSCs migrating to glioma cells. However, through the use of VEGF receptor blocking agents, the number of migrating cells remained unchanged. VEGF preculture increased the number of BMSCs migrating to gliomas. CONCLUSION: VEGF interacts with PDGFRs on the BMSC surface to attract BMSC directional migration and induce BMSC differentiation. The VEGF/PDGFR pathway participates in BMSC directional migration to glioma. VEGF pretreatment increased efficiency of BMSC migration to glioma. 展开更多
关键词 vascular endothelial growth factor platelet-derived growth factor receptor bone marrow-derived mesenchymal stem cells GLIOMA IMMUNOFLUORESCENCE
下载PDF
Lentiviral-mediated vascular endothelial growth factor 165 gene transfer into neural stem cells promotes proliferation 被引量:1
19
作者 Shanshan Zhang Xiangrong Zheng Fei Yin Jielu Tan Yujia Yang 《Neural Regeneration Research》 SCIE CAS CSCD 2011年第19期1457-1461,共5页
We constructed a lentiviral vector carrying vascular endothelial growth factor 165, which was used to transfect neural stem cells. The transfection rate was approximately 50%, as determined by flow cytometry. Vascular... We constructed a lentiviral vector carrying vascular endothelial growth factor 165, which was used to transfect neural stem cells. The transfection rate was approximately 50%, as determined by flow cytometry. Vascular endothelial growth factor protein was detected in neural stem cells and promoted proliferation. 展开更多
关键词 vascular endothelial growth factor 165 gene therapy LENTIVIRUS neural stem cells TRANSFECTION
下载PDF
Neuron-specific enolase expression in a rat model of radiation-induced brain injury following vascular endothelial growth factor-modified neural stem cell transplantation 被引量:1
20
作者 Songhua Xiao Chaohui Duan +4 位作者 Qingyu Shen Yigang Xing Ying Peng Enxiang Tao Jun Liu 《Neural Regeneration Research》 SCIE CAS CSCD 2009年第10期739-743,共5页
BACKGROUND: Previous studies have shown that transplantation of vascular endothelial growth factor (VEGF)-modified neural stem cells (NSC) provides better outcomes, compared with neural stem cells, in the treatme... BACKGROUND: Previous studies have shown that transplantation of vascular endothelial growth factor (VEGF)-modified neural stem cells (NSC) provides better outcomes, compared with neural stem cells, in the treatment of brain damage. OBJECTIVE: To compare the effects of VEGF-modified NSC transplantation and NSC transplantation on radiation-induced brain injury, and to determine neuron-specific enolase (NSE) expression in the brain. DESIGN, TIME, AND SETTING: The randomized, controlled study was performed at the Linbaixin Experimental Center, Second Affiliated Hospital, Sun Yat-sen University, China from November 2007 to October 2008. MATERIALS: VEGF-modified C17.2 NSCs were supplied by Harvard Medical School, USA. Streptavidin-biotin-peroxidase-complex kit (Boster, China) and 5, 6-carboxyfluorescein diacetate succinimidyl ester (Fluka, USA) were used in this study. METHODS: A total of 84 Sprague Dawley rats were randomly assigned to a blank control group (n = 20), model group (n = 20), NSC group (n = 20), and a VEGF-modified NSC group (n = 24). Rat models of radiation-induced brain injury were established in the model, NSC, and VEGF-modified NSC groups. At 1 week following model induction, 10 pL (5 ×10^4 cells/μL) VEGF-modified NSCs or NSCs were respectively infused into the striatum and cerebral cortex of rats from the VEGF-modified NSC and NSC groups. A total of 10μL saline was injected into rats from the blank control and model groups. MAIN OUTCOME MEASURES: NSE expression in the brain was detected by immunohistochemistry following VEGF-modified NSC transplantation. RESULTS: NSE expression was significantly decreased in the brains of radiation-induced brain injury rats (P 〈 0.05). The number of NSE-positive neurons significantly increased in the NSC and VEGF-modified NSC groups, compared with the model group (P 〈 0.05). NSE expression significantly increased in the VEGF-modified NSC group, compared with the NSC group, at 6 weeks following transplantation (P 〈 0.05). CONCLUSION: VEGF-modified NSC transplantation increased NSE expression in rats with radiation-induced brain injury, and the outcomes were superior to NSC transplantation. 展开更多
关键词 vascular endothelial growth factor neuron-specific enolase neural stem cells radiation-induced brain injury
下载PDF
上一页 1 2 196 下一页 到第
使用帮助 返回顶部