The present study highlights the rich species diversity of higher plants in the Bhabha Valley of western Himalaya in India. The analysis of species diversity revealed that a total of 313 species of higher plants inhab...The present study highlights the rich species diversity of higher plants in the Bhabha Valley of western Himalaya in India. The analysis of species diversity revealed that a total of 313 species of higher plants inhabit the valley with a characteristic of moist alpine shrub vegetation. The herbaceous life forms dominate and increase with increasing altitude. The major representations are from the families Asteraceae, Rosaceae, Lamiaceae and Poaceae, suggesting thereby the alpine meadow nature of the study area. The effect of altitude on species diversity displays a hump-shaped curve which may be attributed to increase in habitat diversity at the median ranges and relatively less habitat diversity at higher altitudes. The anthropogenic pressure at lower altitudes results in low plant diversity towards the bottom of the valley with most of the species being exotic in nature. Though the plant diversity is less at higher altitudinal ranges, the uniqueness is relatively high with high species replacement rates. More than 90 % of variability in the species diversity could be explained using appropriate quantitative and statistical analysis along the altitudinal gradient. The valley harbours 18 threatened and 41 endemic species, most of which occur at higher altitudinal gradients due to habitat specificity.展开更多
The present study was conducted to examine the distributional characteristics of floral communities along the altitudinal gradients in Hoang Lien National Park (HLNP), located in Lao Cai province, Vietnam. We recorded...The present study was conducted to examine the distributional characteristics of floral communities along the altitudinal gradients in Hoang Lien National Park (HLNP), located in Lao Cai province, Vietnam. We recorded the relatively abundant flora system with 3252 species (including 361 endemic species and 237 endangered species), belonging to 1126 genera, 230 families and 6 different phyla. Methodology of sampling, specimen collection and identification, statistical analysis are simultaneously used for investigating the complex changes of composition and richness of plant assemblages. The study results indicated the divisions in quantity and composition, especially differentiation of endemic and rare species in accordance with altitudinal gradients.展开更多
Savanna, semi-deserts, and hot deserts characterize the Saharo-Arabian region, which includes Morocco, Mauretania, Algeria, Tunisia, Libya, Egypt, Palestine, Kuwait, Saudi Arabia, Qatar, Bahrain, the United Arab Emira...Savanna, semi-deserts, and hot deserts characterize the Saharo-Arabian region, which includes Morocco, Mauretania, Algeria, Tunisia, Libya, Egypt, Palestine, Kuwait, Saudi Arabia, Qatar, Bahrain, the United Arab Emirates, Oman, Yemen, southern Jordan, Syria, Iraq, Iran, Afghanistan, Pakistan, and northern India. Its neighboring regions, the Sudano-Zambezian region belonging to the Paleotropical Kingdom and the Mediterranean and Irano-Turanian regions included in the Holarctic Kingdom, share a large portion of their flora with the Saharo-Arabian region. Despite the widespread acknowledgment of the region's global importance for plant diversity, an up to date list of the Saharo-Arabian endemics is still unavailable. The available data are frequently insufficient or out of date at both the whole global and the national scales. Therefore, the present study aims at screening and verifying the Saharo-Arabian endemic plants and determining the phytogeographical distribution of these taxa in the Egyptian flora. Hence, a preliminary list of 429 Saharo-Arabian endemic plants in Egypt was compiled from the available literature. Indeed, by excluding the species that were recorded in any countries or regions outside the Saharo-Arabian region based on different literature, database reviews, and websites, the present study has reduced this number to 126 taxa belonging to 87 genera and 37 families. Regarding the national geographic distribution, South Sinai is the richest region with 83 endemic species compared with other eight phytogeographic regions in Egypt, followed by the Isthmic Desert(the middle of Sinai Peninsula, 53 taxa). Sahara regional subzone(SS1) distributes all the 126 endemic species, Arabian regional subzone(SS2) owns 79 taxa, and Nubo-Sindian subzone(SS3) distributes only 14 endemics. Seven groups were recognized at the fourth level of classification as a result of the application of the two-way indicator species analysis(TWINSPAN) to the Saharo-Arabian endemic species in Egypt, i.e., Ⅰ Asphodelus refractus group, Ⅱ Agathophora alopecuroides var. papillosa group, Ⅲ Anvillea garcinii group, Ⅳ Reseda muricata group, V Agathophora alopecuroides var. alopecuroides group, Ⅵ Scrophularia deserti group, and Ⅶ Astragalus schimperi group. It's crucial to clearly define the Saharo-Arabian endemics and illustrate an updated verified database of these taxa for a given territory for providing future management plans that support the conservation and sustainable use of these valuable species under current thought-provoking devastating impacts of rapid anthropogenic and climate change in this region.展开更多
Myanmar is botanically rich and floristically diverse:one of the world's biodiversity hotspots.However,Myanmar is still very unevenly explored,and until a plant checklist was published in 2003,relatively little wo...Myanmar is botanically rich and floristically diverse:one of the world's biodiversity hotspots.However,Myanmar is still very unevenly explored,and until a plant checklist was published in 2003,relatively little work was done on its flora.This checklist included 11,800 species of spermatophytes in 273 families.Since this checklist was published,the botanical exploration of Myanmar has accelerated and there have been many additional publications.We therefore surveyed the literature of taxonomic contributions to Myanmar’s vascular flora over the last 20 years(2000e2019)and compiled a list of new and newly described taxa.Our list includes 13 genera,193 species,7 subspecies,19 varieties,and 2 forms new to science;and 3 families,34 genera,347 species,4 subspecies,7 varieties,and 1 form newly recorded in Myanmar.Altogether,they represent 91 families and 320 genera.Most of the new discoveries belong to 15 families,with more than 25%(146 taxa)belonging to Orchidaceae.These new discoveries are unevenly distributed in the country,with about 41%of the newly discovered species described from Kachin State in northeast Myanmar.This reflects the incompleteness of our current knowledge of the flora of Myanmar and the urgent need for a greatly expanded effort.The completion of the flora of Myanmar requires more fieldwork from north to south,taxonomic studies on new and existing collections,and some mechanism that both coordinates the efforts of various international institutions and initiatives and encourages continued international cooperation.In addition,producing modern taxonomic treatments of the flora of Myanmar requires the participation of experts on all vascular plant families and genera.There is also an urgent need to attract young scientists to plant taxonomy,to work on inventories,identification,nomenclature,herbarium work,and comparative studies.展开更多
Altitudinal changes in species richness, species diversity, species evenness, life-form spectrum, and community structure of arrow bamboo (Fargesia spathacea) were studied within 11 plots from 1 500 m to 2 600 m asl o...Altitudinal changes in species richness, species diversity, species evenness, life-form spectrum, and community structure of arrow bamboo (Fargesia spathacea) were studied within 11 plots from 1 500 m to 2 600 m asl on Mount Shennongjia in Central China. From the lowest plot (1 680 m) to the highest one (2 570 m), vascular plants declined from 30 to 7 species, following a linear model ofY=55.99-1.83X (d.f.=9,F-value=48.64,r 2=0.84,P<0.001); species diversity, reduced from 3.13 to 1.78, following a linear model ofY=4.67–0.10X (d.f.=9,F-value=22.82,r 2=0.72,P=0.001); species evenness varied from 0.83 to 0.99, but presented little relationship to the altitude (r=0.112,P=0.742). In the life-form spectra, with the increase of altitude, the percentage of annual plants (r=0.60), underground bulb perennials (r=0.40), and big trees (r=0.35) tended to increase; shrubs (r=?0.52) and middle-sized trees (r=?0.45) tended to decline; perennial grasses (r=0.04) and semi-shrubs (r=0.03) were not strongly related to the altitudinal gradient. Arrow bamboo communities could be classified into five groups: bamboo under evergreen broad-leaved forest, under deciduous broad-leaved forest, under temperate coniferous forest, under cold-temperate coniferous and mixed forest, and pure bamboo community.展开更多
文摘The present study highlights the rich species diversity of higher plants in the Bhabha Valley of western Himalaya in India. The analysis of species diversity revealed that a total of 313 species of higher plants inhabit the valley with a characteristic of moist alpine shrub vegetation. The herbaceous life forms dominate and increase with increasing altitude. The major representations are from the families Asteraceae, Rosaceae, Lamiaceae and Poaceae, suggesting thereby the alpine meadow nature of the study area. The effect of altitude on species diversity displays a hump-shaped curve which may be attributed to increase in habitat diversity at the median ranges and relatively less habitat diversity at higher altitudes. The anthropogenic pressure at lower altitudes results in low plant diversity towards the bottom of the valley with most of the species being exotic in nature. Though the plant diversity is less at higher altitudinal ranges, the uniqueness is relatively high with high species replacement rates. More than 90 % of variability in the species diversity could be explained using appropriate quantitative and statistical analysis along the altitudinal gradient. The valley harbours 18 threatened and 41 endemic species, most of which occur at higher altitudinal gradients due to habitat specificity.
文摘The present study was conducted to examine the distributional characteristics of floral communities along the altitudinal gradients in Hoang Lien National Park (HLNP), located in Lao Cai province, Vietnam. We recorded the relatively abundant flora system with 3252 species (including 361 endemic species and 237 endangered species), belonging to 1126 genera, 230 families and 6 different phyla. Methodology of sampling, specimen collection and identification, statistical analysis are simultaneously used for investigating the complex changes of composition and richness of plant assemblages. The study results indicated the divisions in quantity and composition, especially differentiation of endemic and rare species in accordance with altitudinal gradients.
文摘Savanna, semi-deserts, and hot deserts characterize the Saharo-Arabian region, which includes Morocco, Mauretania, Algeria, Tunisia, Libya, Egypt, Palestine, Kuwait, Saudi Arabia, Qatar, Bahrain, the United Arab Emirates, Oman, Yemen, southern Jordan, Syria, Iraq, Iran, Afghanistan, Pakistan, and northern India. Its neighboring regions, the Sudano-Zambezian region belonging to the Paleotropical Kingdom and the Mediterranean and Irano-Turanian regions included in the Holarctic Kingdom, share a large portion of their flora with the Saharo-Arabian region. Despite the widespread acknowledgment of the region's global importance for plant diversity, an up to date list of the Saharo-Arabian endemics is still unavailable. The available data are frequently insufficient or out of date at both the whole global and the national scales. Therefore, the present study aims at screening and verifying the Saharo-Arabian endemic plants and determining the phytogeographical distribution of these taxa in the Egyptian flora. Hence, a preliminary list of 429 Saharo-Arabian endemic plants in Egypt was compiled from the available literature. Indeed, by excluding the species that were recorded in any countries or regions outside the Saharo-Arabian region based on different literature, database reviews, and websites, the present study has reduced this number to 126 taxa belonging to 87 genera and 37 families. Regarding the national geographic distribution, South Sinai is the richest region with 83 endemic species compared with other eight phytogeographic regions in Egypt, followed by the Isthmic Desert(the middle of Sinai Peninsula, 53 taxa). Sahara regional subzone(SS1) distributes all the 126 endemic species, Arabian regional subzone(SS2) owns 79 taxa, and Nubo-Sindian subzone(SS3) distributes only 14 endemics. Seven groups were recognized at the fourth level of classification as a result of the application of the two-way indicator species analysis(TWINSPAN) to the Saharo-Arabian endemic species in Egypt, i.e., Ⅰ Asphodelus refractus group, Ⅱ Agathophora alopecuroides var. papillosa group, Ⅲ Anvillea garcinii group, Ⅳ Reseda muricata group, V Agathophora alopecuroides var. alopecuroides group, Ⅵ Scrophularia deserti group, and Ⅶ Astragalus schimperi group. It's crucial to clearly define the Saharo-Arabian endemics and illustrate an updated verified database of these taxa for a given territory for providing future management plans that support the conservation and sustainable use of these valuable species under current thought-provoking devastating impacts of rapid anthropogenic and climate change in this region.
基金National Natural Science Foundation of China(No.31900180 and 31970223)the Southeast Asia Biodiversity Research Institute,Chinese Academy of Sciences(Grant No.Y4ZK111B01).
文摘Myanmar is botanically rich and floristically diverse:one of the world's biodiversity hotspots.However,Myanmar is still very unevenly explored,and until a plant checklist was published in 2003,relatively little work was done on its flora.This checklist included 11,800 species of spermatophytes in 273 families.Since this checklist was published,the botanical exploration of Myanmar has accelerated and there have been many additional publications.We therefore surveyed the literature of taxonomic contributions to Myanmar’s vascular flora over the last 20 years(2000e2019)and compiled a list of new and newly described taxa.Our list includes 13 genera,193 species,7 subspecies,19 varieties,and 2 forms new to science;and 3 families,34 genera,347 species,4 subspecies,7 varieties,and 1 form newly recorded in Myanmar.Altogether,they represent 91 families and 320 genera.Most of the new discoveries belong to 15 families,with more than 25%(146 taxa)belonging to Orchidaceae.These new discoveries are unevenly distributed in the country,with about 41%of the newly discovered species described from Kachin State in northeast Myanmar.This reflects the incompleteness of our current knowledge of the flora of Myanmar and the urgent need for a greatly expanded effort.The completion of the flora of Myanmar requires more fieldwork from north to south,taxonomic studies on new and existing collections,and some mechanism that both coordinates the efforts of various international institutions and initiatives and encourages continued international cooperation.In addition,producing modern taxonomic treatments of the flora of Myanmar requires the participation of experts on all vascular plant families and genera.There is also an urgent need to attract young scientists to plant taxonomy,to work on inventories,identification,nomenclature,herbarium work,and comparative studies.
基金This study is a part of bamboo research project within ZEF (Center for Development Researches P.N. 52015) of Bonn University+1 种基金financed by GTZ Germany.
文摘Altitudinal changes in species richness, species diversity, species evenness, life-form spectrum, and community structure of arrow bamboo (Fargesia spathacea) were studied within 11 plots from 1 500 m to 2 600 m asl on Mount Shennongjia in Central China. From the lowest plot (1 680 m) to the highest one (2 570 m), vascular plants declined from 30 to 7 species, following a linear model ofY=55.99-1.83X (d.f.=9,F-value=48.64,r 2=0.84,P<0.001); species diversity, reduced from 3.13 to 1.78, following a linear model ofY=4.67–0.10X (d.f.=9,F-value=22.82,r 2=0.72,P=0.001); species evenness varied from 0.83 to 0.99, but presented little relationship to the altitude (r=0.112,P=0.742). In the life-form spectra, with the increase of altitude, the percentage of annual plants (r=0.60), underground bulb perennials (r=0.40), and big trees (r=0.35) tended to increase; shrubs (r=?0.52) and middle-sized trees (r=?0.45) tended to decline; perennial grasses (r=0.04) and semi-shrubs (r=0.03) were not strongly related to the altitudinal gradient. Arrow bamboo communities could be classified into five groups: bamboo under evergreen broad-leaved forest, under deciduous broad-leaved forest, under temperate coniferous forest, under cold-temperate coniferous and mixed forest, and pure bamboo community.