Vascular tissues are very important for providing both mechanical strength and long-distance transport. The molecular mechanisms of regulation of vascular tissue develop- ment are still not fully understood. In this s...Vascular tissues are very important for providing both mechanical strength and long-distance transport. The molecular mechanisms of regulation of vascular tissue develop- ment are still not fully understood. In this study we identified ANACoo5 as a membrane-associated NAC family transcription factor that regulates vascular tissue development. Reporter gene assays showed that ANACoo5 was expressed mainly in the vascular tissues, increased expression of ANACoo5 protein in transgenic Arabidopsis caused dwarf phenotype, reduced xylem differentiation, decreased lignin content, repression of a lignin biosynthetic gene and genes related to cambium and primary wall, but activation of genes related to the secondary wall. Expression of a dominant repressor fusion of ANACoo5 had overall the opposite effects on vascular tissue differ- entiation and lignin synthetic gene expression. The ANACoo5- GFP fusion protein was localized at the plasma membrane, whereas deletion of the last 20 amino acids, which are mostly basic, caused its nuclear localization. These results indicate that ANACoo5 is a cell membrane-associated transcription factor that inhibits xylem tissue development in Arabidopsis.展开更多
基金supported by the National High Technology Research and Development Program of China(2012AA101108)National Natural Science Foundation of China(31171614)Ministry of Agriculture of China(2014ZX08001)
文摘Vascular tissues are very important for providing both mechanical strength and long-distance transport. The molecular mechanisms of regulation of vascular tissue develop- ment are still not fully understood. In this study we identified ANACoo5 as a membrane-associated NAC family transcription factor that regulates vascular tissue development. Reporter gene assays showed that ANACoo5 was expressed mainly in the vascular tissues, increased expression of ANACoo5 protein in transgenic Arabidopsis caused dwarf phenotype, reduced xylem differentiation, decreased lignin content, repression of a lignin biosynthetic gene and genes related to cambium and primary wall, but activation of genes related to the secondary wall. Expression of a dominant repressor fusion of ANACoo5 had overall the opposite effects on vascular tissue differ- entiation and lignin synthetic gene expression. The ANACoo5- GFP fusion protein was localized at the plasma membrane, whereas deletion of the last 20 amino acids, which are mostly basic, caused its nuclear localization. These results indicate that ANACoo5 is a cell membrane-associated transcription factor that inhibits xylem tissue development in Arabidopsis.