An absolute gravimeter is a precision instrument for measuring gravitational acceleration, which plays an important role in earthquake monitoring, crustal deformation, national defense construction, etc. The frequency...An absolute gravimeter is a precision instrument for measuring gravitational acceleration, which plays an important role in earthquake monitoring, crustal deformation, national defense construction, etc. The frequency of laser interference fringes of an absolute gravimeter gradually increases with the fall time. Data are sparse in the early stage and dense in the late stage. The fitting accuracy of gravitational acceleration will be affected by least-squares fitting according to the fixed number of zero-crossing groups. In response to this problem, a method based on Fourier series fitting is proposed in this paper to calculate the zero-crossing point. The whole falling process is divided into five frequency bands using the Hilbert transformation. The multiplicative auto-regressive moving average model is then trained according to the number of optimal zero-crossing groups obtained by the honey badger algorithm. Through this model, the number of optimal zero-crossing groups determined in each segment is predicted by the least-squares fitting. The mean value of gravitational acceleration in each segment is then obtained. The method can improve the accuracy of gravitational measurement by more than 25% compared to the fixed zero-crossing groups method. It provides a new way to improve the measuring accuracy of an absolute gravimeter.展开更多
It is important to understand the dynamics of malaria vectors in implementing malaria control strategies. Six villages were selected from different sections in the Three Gorges Reservoir fc,r exploring the relationshi...It is important to understand the dynamics of malaria vectors in implementing malaria control strategies. Six villages were selected from different sections in the Three Gorges Reservoir fc,r exploring the relationship between the climatic |:actors and its malaria vector density from 1997 to 2007 using the auto-regressive linear model regressi^n method. The result indicated that both temperature and precipitation were better modeled as quadratic rather than linearly related to the density of Anopheles sinensis.展开更多
Renewable energy sources are gaining popularity,particularly photovoltaic energy as a clean energy source.This is evident in the advancement of scientific research aimed at improving solar cell performance.Due to the ...Renewable energy sources are gaining popularity,particularly photovoltaic energy as a clean energy source.This is evident in the advancement of scientific research aimed at improving solar cell performance.Due to the non-linear nature of the photovoltaic cell,modeling solar cells and extracting their parameters is one of the most important challenges in this discipline.As a result,the use of optimization algorithms to solve this problem is expanding and evolving at a rapid rate.In this paper,a weIghted meaN oF vectOrs algorithm(INFO)that calculates the weighted mean for a set of vectors in the search space has been applied to estimate the parameters of solar cells in an efficient and precise way.In each generation,the INFO utilizes three operations to update the vectors’locations:updating rules,vector merging,and local search.The INFO is applied to estimate the parameters of static models such as single and double diodes,as well as dynamic models such as integral and fractional models.The outcomes of all applications are examined and compared to several recent algorithms.As well as the results are evaluated through statistical analysis.The results analyzed supported the proposed algorithm’s efficiency,accuracy,and durability when compared to recent optimization algorithms.展开更多
Outbreaks of hand-foot-mouth disease(HFMD) have occurred many times and caused serious health burden in China since 2008. Application of modern information technology to prediction and early response can be helpful ...Outbreaks of hand-foot-mouth disease(HFMD) have occurred many times and caused serious health burden in China since 2008. Application of modern information technology to prediction and early response can be helpful for efficient HFMD prevention and control. A seasonal auto-regressive integrated moving average(ARIMA) model for time series analysis was designed in this study. Eighty-four-month(from January 2009 to December 2015) retrospective data obtained from the Chinese Information System for Disease Prevention and Control were subjected to ARIMA modeling. The coefficient of determination(R^2), normalized Bayesian Information Criterion(BIC) and Q-test P value were used to evaluate the goodness-of-fit of constructed models. Subsequently, the best-fitted ARIMA model was applied to predict the expected incidence of HFMD from January 2016 to December 2016. The best-fitted seasonal ARIMA model was identified as(1,0,1)(0,1,1)12, with the largest coefficient of determination(R^2=0.743) and lowest normalized BIC(BIC=3.645) value. The residuals of the model also showed non-significant autocorrelations(P_(Box-Ljung(Q))=0.299). The predictions by the optimum ARIMA model adequately captured the pattern in the data and exhibited two peaks of activity over the forecast interval, including a major peak during April to June, and again a light peak for September to November. The ARIMA model proposed in this study can forecast HFMD incidence trend effectively, which could provide useful support for future HFMD prevention and control in the study area. Besides, further observations should be added continually into the modeling data set, and parameters of the models should be adjusted accordingly.展开更多
Forecasting solar irradiance is a critical task in the renewable energy sector, as it provides essential information regarding the potential energy production from solar panels. This study aims to utilize the Vector A...Forecasting solar irradiance is a critical task in the renewable energy sector, as it provides essential information regarding the potential energy production from solar panels. This study aims to utilize the Vector Autoregression (VAR) model to forecast solar irradiance levels and weather characteristics in the San Francisco Bay Area. The results demonstrate a correlation between predicted and actual solar irradiance, indicating the effectiveness of the VAR model for this task. However, the model may not be sufficient for this region due to the requirement of additional weather features to reduce disparities between predictions and actual observations. Additionally, the current lag order in the model is relatively low, limiting its ability to capture all relevant information from past observations. As a result, the model’s forecasting capability is limited to short-term horizons, with a maximum horizon of four hours.展开更多
At the present time,the Industrial Internet of Things(IIoT)has swiftly evolved and emerged,and picture data that is collected by terminal devices or IoT nodes are tied to the user's private data.The use of image s...At the present time,the Industrial Internet of Things(IIoT)has swiftly evolved and emerged,and picture data that is collected by terminal devices or IoT nodes are tied to the user's private data.The use of image sensors as an automa-tion tool for the IIoT is increasingly becoming more common.Due to the fact that this organisation transfers an enormous number of photographs at any one time,one of the most significant issues that it has is reducing the total quantity of data that is sent and,as a result,the available bandwidth,without compromising the image quality.Image compression in the sensor,on the other hand,expedites the transfer of data while simultaneously reducing bandwidth use.The traditional method of protecting sensitive data is rendered less effective in an environment dominated by IoT owing to the involvement of third parties.The image encryp-tion model provides a safe and adaptable method to protect the confidentiality of picture transformation and storage inside an IIoT system.This helps to ensure that image datasets are kept safe.The Linde–Buzo–Gray(LBG)methodology is an example of a vector quantization algorithm that is extensively used and a rela-tively new form of picture reduction known as vector quantization(VQ).As a result,the purpose of this research is to create an artificial humming bird optimi-zation approach that combines LBG-enabled codebook creation and encryption(AHBO-LBGCCE)for use in an IIoT setting.In the beginning,the AHBO-LBGCCE method used the LBG model in conjunction with the AHBO algorithm in order to construct the VQ.The Burrows-Wheeler Transform(BWT)model is used in order to accomplish codebook compression.In addition,the Blowfish algorithm is used in order to carry out the encryption procedure so that security may be attained.A comprehensive experimental investigation is carried out in order to verify the effectiveness of the proposed algorithm in comparison to other algorithms.The experimental values ensure that the suggested approach and the outcomes are examined in a variety of different perspectives in order to further enhance them.展开更多
The goal of this research is to introduce the simulation studies of the vector-host disease nonlinear system(VHDNS)along with the numerical treatment of artificial neural networks(ANNs)techniques supported by Levenber...The goal of this research is to introduce the simulation studies of the vector-host disease nonlinear system(VHDNS)along with the numerical treatment of artificial neural networks(ANNs)techniques supported by Levenberg-Marquardt backpropagation(LMQBP),known as ANNs-LMQBP.This mechanism is physically appropriate,where the number of infected people is increasing along with the limited health services.Furthermore,the biological effects have fadingmemories and exhibit transition behavior.Initially,the model is developed by considering the two and three categories for the humans and the vector species.The VHDNS is constructed with five classes,susceptible humans Sh(t),infected humans Ih(t),recovered humans Rh(t),infected vectors Iv(t),and susceptible vector Sv(t)based system of the fractional-order nonlinear ordinary differential equations.To solve the number of variations of the VHDNS,the numerical simulations are performed using the stochastic ANNs-LMQBP.The achieved numerical solutions for solving the VHDNS using the stochastic ANNs-LMQBP have been described for training,verifying,and testing data to decrease the mean square error(MSE).An extensive analysis is provided using the correlation studies,MSE,error histograms(EHs),state transitions(STs),and regression to observe the accuracy,efficiency,expertise,and aptitude of the computing ANNs-LMQBP.展开更多
Statistical properties of winds near the Taichung Harbour are investigated. The 26 years'incomplete data of wind speeds, measured on an hourly basis, are used as reference. The possibility of imputation using simu...Statistical properties of winds near the Taichung Harbour are investigated. The 26 years'incomplete data of wind speeds, measured on an hourly basis, are used as reference. The possibility of imputation using simulated results of the Auto-Regressive (AR), Moving-Average (MA), and/ or Auto-Regressive and Moving-Average (ARMA) models is studied. Predictions of the 25-year extreme wind speeds based upon the augmented data are compared with the original series. Based upon the results, predictions of the 50- and 100-year extreme wind speeds are then made.展开更多
Machine learning algorithms operating in an unsupervised fashion has emerged as promising tools for detecting structural damage in an automated fashion.Its essence relies on selecting appropriate features to train the...Machine learning algorithms operating in an unsupervised fashion has emerged as promising tools for detecting structural damage in an automated fashion.Its essence relies on selecting appropriate features to train the model using the reference data set collected from the healthy structure and employing the trained model to identify outlier conditions representing the damaged state.In this paper,the coefficients and the residuals of the autoregressive model with exogenous input created using only the measured output signals are extracted as damage features.These features obtained at the baseline state for each sensor cluster are then utilized to train the one class support vector machine,an unsupervised classifier generating a decision function using only patterns belonging to this baseline state.Structural damage,once detected by the trained machine,a damage index based on comparison of the residuals between the trained class and the outlier state is implemented for localizing damage.The two-step damage assessment framework is first implemented on an eight degree-of-freedom numerical model with the effects of measurement noise integrated.Subsequently,vibration data collected from a one-story one-bay reinforced concrete frame inflicted with progressive levels of damage have been utilized to verify the accuracy and robustness of the proposed methodology.展开更多
Slope stability analysis is a classical mechanical problem in geotechnical engineering and engineering geology.It is of great significance to study the stability evolution of expansive soil slopes for engineering cons...Slope stability analysis is a classical mechanical problem in geotechnical engineering and engineering geology.It is of great significance to study the stability evolution of expansive soil slopes for engineering construction in expansive soil areas.Most of the existing studies evaluate the slope stability by analyzing the limit equilibrium state of the slope,and the analysis method for the stability evolution considering the damage softening of the shear zone is lacking.In this study,the large deformation shear mechanical behavior of expansive soil was investigated by ring shear test.The damage softening characteristic of expansive soil in the shear zone was analyzed,and a shear damage model reflecting the damage softening behavior of expansive soil was derived based on the damage theory.Finally,by skillfully combining the vector sum method and the shear damage model,an analysis method for the stability evolution of the expansive soil slope considering the shear zone damage softening was proposed.The results show that the shear zone subjected to large displacement shear deformation exhibits an obvious damage softening phenomenon.The damage variable equation based on the logistic function can be well used to describe the shear damage characteristics of expansive soil,and the proposed shear damage model is in good agreement with the ring shear test results.The vector sum method considering the damage softening behavior of the shear zone can be well applied to analyze the stability evolution characteristics of the expansive soil slope.The stability factor of the expansive soil slope decreases with the increase of shear displacement,showing an obvious progressive failure behavior.展开更多
This study introduces the Orbit Weighting Scheme(OWS),a novel approach aimed at enhancing the precision and efficiency of Vector Space information retrieval(IR)models,which have traditionally relied on weighting schem...This study introduces the Orbit Weighting Scheme(OWS),a novel approach aimed at enhancing the precision and efficiency of Vector Space information retrieval(IR)models,which have traditionally relied on weighting schemes like tf-idf and BM25.These conventional methods often struggle with accurately capturing document relevance,leading to inefficiencies in both retrieval performance and index size management.OWS proposes a dynamic weighting mechanism that evaluates the significance of terms based on their orbital position within the vector space,emphasizing term relationships and distribution patterns overlooked by existing models.Our research focuses on evaluating OWS’s impact on model accuracy using Information Retrieval metrics like Recall,Precision,InterpolatedAverage Precision(IAP),andMeanAverage Precision(MAP).Additionally,we assessOWS’s effectiveness in reducing the inverted index size,crucial for model efficiency.We compare OWS-based retrieval models against others using different schemes,including tf-idf variations and BM25Delta.Results reveal OWS’s superiority,achieving a 54%Recall and 81%MAP,and a notable 38%reduction in the inverted index size.This highlights OWS’s potential in optimizing retrieval processes and underscores the need for further research in this underrepresented area to fully leverage OWS’s capabilities in information retrieval methodologies.展开更多
Machine learning is currently one of the research hotspots in the field of landslide prediction.To clarify and evaluate the differences in characteristics and prediction effects of different machine learning models,Co...Machine learning is currently one of the research hotspots in the field of landslide prediction.To clarify and evaluate the differences in characteristics and prediction effects of different machine learning models,Conghua District,which is the most prone to landslide disasters in Guangzhou,was selected for landslide susceptibility evaluation.The evaluation factors were selected by using correlation analysis and variance expansion factor method.Applying four machine learning methods namely Logistic Regression(LR),Random Forest(RF),Support Vector Machines(SVM),and Extreme Gradient Boosting(XGB),landslide models were constructed.Comparative analysis and evaluation of the model were conducted through statistical indices and receiver operating characteristic(ROC)curves.The results showed that LR,RF,SVM,and XGB models have good predictive performance for landslide susceptibility,with the area under curve(AUC)values of 0.752,0.965,0.996,and 0.998,respectively.XGB model had the highest predictive ability,followed by RF model,SVM model,and LR model.The frequency ratio(FR)accuracy of LR,RF,SVM,and XGB models was 0.775,0.842,0.759,and 0.822,respectively.RF and XGB models were superior to LR and SVM models,indicating that the integrated algorithm has better predictive ability than a single classification algorithm in regional landslide classification problems.展开更多
Signal-to-noise ratio(SNR)estimation for signal which can be modeled by Auto-regressive(AR)process is studied in this paper.First,the conventional frequency domain method is introduced to estimate the SNR for the ...Signal-to-noise ratio(SNR)estimation for signal which can be modeled by Auto-regressive(AR)process is studied in this paper.First,the conventional frequency domain method is introduced to estimate the SNR for the received signal in additive white Gauss noise(AWGN)channel.Then a parametric SNR estimation algorithm is proposed by taking advantage of the AR model information of the received signal.The simulation results show that the proposed parametric method has better performance than the conventional frequency doma in method in case of AWGN channel.展开更多
The wave/particle duality of particles in Physics is well known. Particles have properties that uniquely characterize them from one another, such as mass, charge and spin. Charged particles have associated Electric an...The wave/particle duality of particles in Physics is well known. Particles have properties that uniquely characterize them from one another, such as mass, charge and spin. Charged particles have associated Electric and Magnetic fields. Also, every moving particle has a De Broglie wavelength determined by its mass and velocity. This paper shows that all of these properties of a particle can be derived from a single wave function equation for that particle. Wave functions for the Electron and the Positron are presented and principles are provided that can be used to calculate the wave functions of all the fundamental particles in Physics. Fundamental particles such as electrons and positrons are considered to be point particles in the Standard Model of Physics and are not considered to have a structure. This paper demonstrates that they do indeed have structure and that this structure extends into the space around the particle’s center (in fact, they have infinite extent), but with rapidly diminishing energy density with the distance from that center. The particles are formed from Electromagnetic standing waves, which are stable solutions to the Schrödinger and Classical wave equations. This stable structure therefore accounts for both the wave and particle nature of these particles. In fact, all of their properties such as mass, spin and electric charge, can be accounted for from this structure. These particle properties appear to originate from a single point at the center of the wave function structure, in the same sort of way that the Shell theorem of gravity causes the gravity of a body to appear to all originate from a central point. This paper represents the first two fully characterized fundamental particles, with a complete description of their structure and properties, built up from the underlying Electromagnetic waves that comprise these and all fundamental particles.展开更多
Ross’ epidemic model describing the transmission of malaria uses two classes of infection, one for humans and one for mosquitoes. This paper presents a stochastic extension of a deterministic vector-borne epidemic mo...Ross’ epidemic model describing the transmission of malaria uses two classes of infection, one for humans and one for mosquitoes. This paper presents a stochastic extension of a deterministic vector-borne epidemic model based only on the class of human infectious. The consistency of the model is established by proving that the stochastic delay differential equation describing the model has a unique positive global solution. The extinction of the disease is studied through the analysis of the stability of the disease-free equilibrium state and the persistence of the model. Finally, we introduce some numerical simulations to illustrate the obtained results.展开更多
Extending the lead time of precipitation nowcasts is vital to improvements in heavy rainfall warning, flood mitigation, and water resource management. Because the TREC vector (tracking radar echo by correlation) rep...Extending the lead time of precipitation nowcasts is vital to improvements in heavy rainfall warning, flood mitigation, and water resource management. Because the TREC vector (tracking radar echo by correlation) represents only the instantaneous trend of precipitation echo motion, the approach using derived echo motion vectors to extrapolate radar reflectivity as a rainfall forecast is not satisfactory if the lead time is beyond 30 minutes. For longer lead times, the effect of ambient winds on echo movement should be considered. In this paper, an extrapolation algorithm that extends forecast lead times up to 3 hours was developed to blend TREC vectors with model-predicted winds. The TREC vectors were derived from radar reflectivity patterns in 3 km height CAPPI (constant altitude plan position indicator) mosaics through a cross-correlation technique. The background steering winds were provided by predictions of the rapid update assimilation model CHAF (cycle of hourly assimilation and forecast). A similarity index was designed to determine the vertical level at which model winds were applied in the extrapolation process, which occurs via a comparison between model winds and radar vectors. Based on a summer rainfall case study, it is found that the new algorithm provides a better forecast.展开更多
In this paper we apply the nonlinear time series analysis method to small-time scale traffic measurement data. The prediction-based method is used to determine the embedding dimension of the traffic data. Based on the...In this paper we apply the nonlinear time series analysis method to small-time scale traffic measurement data. The prediction-based method is used to determine the embedding dimension of the traffic data. Based on the reconstructed phase space, the local support vector machine prediction method is used to predict the traffic measurement data, and the BIC-based neighbouring point selection method is used to choose the number of the nearest neighbouring points for the local support vector machine regression model. The experimental results show that the local support vector machine prediction method whose neighbouring points are optimized can effectively predict the small-time scale traffic measurement data and can reproduce the statistical features of real traffic measurements.展开更多
Soft sensor is widely used in industrial process control. It plays animportant role to improve the quality of product and assure safety in production. The core of softsensor is to construct soft sensing model. A new s...Soft sensor is widely used in industrial process control. It plays animportant role to improve the quality of product and assure safety in production. The core of softsensor is to construct soft sensing model. A new soft sensing modeling method based on supportvector machine (SVM) is proposed. SVM is a new machine learning method based on statistical learningtheory and is powerful for the problem characterized by small sample, nonlinearity, high dimensionand local minima. The proposed methods are applied to the estimation of frozen point of light dieseloil in distillation column. The estimated outputs of soft sensing model based on SVM match the realvalues of frozen point and follow varying trend of frozen point very well. Experiment results showthat SVM provides a new effective method for soft sensing modeling and has promising application inindustrial process applications.展开更多
Multi-kernel-based support vector machine (SVM) model structure of nonlinear systems and its specific identification method is proposed, which is composed of a SVM with linear kernel function followed in series by a...Multi-kernel-based support vector machine (SVM) model structure of nonlinear systems and its specific identification method is proposed, which is composed of a SVM with linear kernel function followed in series by a SVM with spline kernel function. With the help of this model, nonlinear model predictive control can be transformed to linear model predictive control, and consequently a unified analytical solution of optimal input of multi-step-ahead predictive control is possible to derive. This algorithm does not require online iterative optimization in order to be suitable for real-time control with less calculation. The simulation results of pH neutralization process and CSTR reactor show the effectiveness and advantages of the presented algorithm.展开更多
A cardiac vector model is presented and verified, and then the forward problem for cardiac magnetic fields and electric potential are discussed based on this model and the realistic human torso volume conductor model,...A cardiac vector model is presented and verified, and then the forward problem for cardiac magnetic fields and electric potential are discussed based on this model and the realistic human torso volume conductor model, including lungs. A torso-cardiac vector model is used for a 12-lead electrocardiographic (ECG) and magneto-cardiogram (MCG) simulation study by using the boundary element method (BEM). Also, we obtain the MCG wave picture using a compound four-channel HTc.SQUID system in a magnetically shielded room. By comparing the simulated results and experimental results, we verify the cardiac vector model and then do a preliminary study of the forward problem of MCG and ECG. Therefore, the results show that the vector model is reasonable in cardiac electrophysiology.展开更多
基金Project supported by the National Key R&D Program of China (Grant No. 2022YFF0607504)。
文摘An absolute gravimeter is a precision instrument for measuring gravitational acceleration, which plays an important role in earthquake monitoring, crustal deformation, national defense construction, etc. The frequency of laser interference fringes of an absolute gravimeter gradually increases with the fall time. Data are sparse in the early stage and dense in the late stage. The fitting accuracy of gravitational acceleration will be affected by least-squares fitting according to the fixed number of zero-crossing groups. In response to this problem, a method based on Fourier series fitting is proposed in this paper to calculate the zero-crossing point. The whole falling process is divided into five frequency bands using the Hilbert transformation. The multiplicative auto-regressive moving average model is then trained according to the number of optimal zero-crossing groups obtained by the honey badger algorithm. Through this model, the number of optimal zero-crossing groups determined in each segment is predicted by the least-squares fitting. The mean value of gravitational acceleration in each segment is then obtained. The method can improve the accuracy of gravitational measurement by more than 25% compared to the fixed zero-crossing groups method. It provides a new way to improve the measuring accuracy of an absolute gravimeter.
基金funded by the Public Project(20080219)of the Ministry of Science and Technology,PRC
文摘It is important to understand the dynamics of malaria vectors in implementing malaria control strategies. Six villages were selected from different sections in the Three Gorges Reservoir fc,r exploring the relationship between the climatic |:actors and its malaria vector density from 1997 to 2007 using the auto-regressive linear model regressi^n method. The result indicated that both temperature and precipitation were better modeled as quadratic rather than linearly related to the density of Anopheles sinensis.
基金This research is funded by Prince Sattam BinAbdulaziz University,Grant Number IF-PSAU-2021/01/18921.
文摘Renewable energy sources are gaining popularity,particularly photovoltaic energy as a clean energy source.This is evident in the advancement of scientific research aimed at improving solar cell performance.Due to the non-linear nature of the photovoltaic cell,modeling solar cells and extracting their parameters is one of the most important challenges in this discipline.As a result,the use of optimization algorithms to solve this problem is expanding and evolving at a rapid rate.In this paper,a weIghted meaN oF vectOrs algorithm(INFO)that calculates the weighted mean for a set of vectors in the search space has been applied to estimate the parameters of solar cells in an efficient and precise way.In each generation,the INFO utilizes three operations to update the vectors’locations:updating rules,vector merging,and local search.The INFO is applied to estimate the parameters of static models such as single and double diodes,as well as dynamic models such as integral and fractional models.The outcomes of all applications are examined and compared to several recent algorithms.As well as the results are evaluated through statistical analysis.The results analyzed supported the proposed algorithm’s efficiency,accuracy,and durability when compared to recent optimization algorithms.
基金financially supported by the Health and Family Planning Commission of Hubei Province(No.WJ2017F047)the Health and Family Planning Commission of Wuhan(No.WG17D05)
文摘Outbreaks of hand-foot-mouth disease(HFMD) have occurred many times and caused serious health burden in China since 2008. Application of modern information technology to prediction and early response can be helpful for efficient HFMD prevention and control. A seasonal auto-regressive integrated moving average(ARIMA) model for time series analysis was designed in this study. Eighty-four-month(from January 2009 to December 2015) retrospective data obtained from the Chinese Information System for Disease Prevention and Control were subjected to ARIMA modeling. The coefficient of determination(R^2), normalized Bayesian Information Criterion(BIC) and Q-test P value were used to evaluate the goodness-of-fit of constructed models. Subsequently, the best-fitted ARIMA model was applied to predict the expected incidence of HFMD from January 2016 to December 2016. The best-fitted seasonal ARIMA model was identified as(1,0,1)(0,1,1)12, with the largest coefficient of determination(R^2=0.743) and lowest normalized BIC(BIC=3.645) value. The residuals of the model also showed non-significant autocorrelations(P_(Box-Ljung(Q))=0.299). The predictions by the optimum ARIMA model adequately captured the pattern in the data and exhibited two peaks of activity over the forecast interval, including a major peak during April to June, and again a light peak for September to November. The ARIMA model proposed in this study can forecast HFMD incidence trend effectively, which could provide useful support for future HFMD prevention and control in the study area. Besides, further observations should be added continually into the modeling data set, and parameters of the models should be adjusted accordingly.
文摘Forecasting solar irradiance is a critical task in the renewable energy sector, as it provides essential information regarding the potential energy production from solar panels. This study aims to utilize the Vector Autoregression (VAR) model to forecast solar irradiance levels and weather characteristics in the San Francisco Bay Area. The results demonstrate a correlation between predicted and actual solar irradiance, indicating the effectiveness of the VAR model for this task. However, the model may not be sufficient for this region due to the requirement of additional weather features to reduce disparities between predictions and actual observations. Additionally, the current lag order in the model is relatively low, limiting its ability to capture all relevant information from past observations. As a result, the model’s forecasting capability is limited to short-term horizons, with a maximum horizon of four hours.
文摘At the present time,the Industrial Internet of Things(IIoT)has swiftly evolved and emerged,and picture data that is collected by terminal devices or IoT nodes are tied to the user's private data.The use of image sensors as an automa-tion tool for the IIoT is increasingly becoming more common.Due to the fact that this organisation transfers an enormous number of photographs at any one time,one of the most significant issues that it has is reducing the total quantity of data that is sent and,as a result,the available bandwidth,without compromising the image quality.Image compression in the sensor,on the other hand,expedites the transfer of data while simultaneously reducing bandwidth use.The traditional method of protecting sensitive data is rendered less effective in an environment dominated by IoT owing to the involvement of third parties.The image encryp-tion model provides a safe and adaptable method to protect the confidentiality of picture transformation and storage inside an IIoT system.This helps to ensure that image datasets are kept safe.The Linde–Buzo–Gray(LBG)methodology is an example of a vector quantization algorithm that is extensively used and a rela-tively new form of picture reduction known as vector quantization(VQ).As a result,the purpose of this research is to create an artificial humming bird optimi-zation approach that combines LBG-enabled codebook creation and encryption(AHBO-LBGCCE)for use in an IIoT setting.In the beginning,the AHBO-LBGCCE method used the LBG model in conjunction with the AHBO algorithm in order to construct the VQ.The Burrows-Wheeler Transform(BWT)model is used in order to accomplish codebook compression.In addition,the Blowfish algorithm is used in order to carry out the encryption procedure so that security may be attained.A comprehensive experimental investigation is carried out in order to verify the effectiveness of the proposed algorithm in comparison to other algorithms.The experimental values ensure that the suggested approach and the outcomes are examined in a variety of different perspectives in order to further enhance them.
基金funded by National Research Council of Thailand(NRCT)and Khon Kaen University:N42A650291。
文摘The goal of this research is to introduce the simulation studies of the vector-host disease nonlinear system(VHDNS)along with the numerical treatment of artificial neural networks(ANNs)techniques supported by Levenberg-Marquardt backpropagation(LMQBP),known as ANNs-LMQBP.This mechanism is physically appropriate,where the number of infected people is increasing along with the limited health services.Furthermore,the biological effects have fadingmemories and exhibit transition behavior.Initially,the model is developed by considering the two and three categories for the humans and the vector species.The VHDNS is constructed with five classes,susceptible humans Sh(t),infected humans Ih(t),recovered humans Rh(t),infected vectors Iv(t),and susceptible vector Sv(t)based system of the fractional-order nonlinear ordinary differential equations.To solve the number of variations of the VHDNS,the numerical simulations are performed using the stochastic ANNs-LMQBP.The achieved numerical solutions for solving the VHDNS using the stochastic ANNs-LMQBP have been described for training,verifying,and testing data to decrease the mean square error(MSE).An extensive analysis is provided using the correlation studies,MSE,error histograms(EHs),state transitions(STs),and regression to observe the accuracy,efficiency,expertise,and aptitude of the computing ANNs-LMQBP.
基金The project is partly supported by the National Science Council, Contract Nos. NSC-89-261 l-E-019-024 (JZY), and NSC-89-2611-E-019-027 (CRC).
文摘Statistical properties of winds near the Taichung Harbour are investigated. The 26 years'incomplete data of wind speeds, measured on an hourly basis, are used as reference. The possibility of imputation using simulated results of the Auto-Regressive (AR), Moving-Average (MA), and/ or Auto-Regressive and Moving-Average (ARMA) models is studied. Predictions of the 25-year extreme wind speeds based upon the augmented data are compared with the original series. Based upon the results, predictions of the 50- and 100-year extreme wind speeds are then made.
基金funding provided by the Scientific and Technological Research Council of Türkiye(TÜBİTAK).
文摘Machine learning algorithms operating in an unsupervised fashion has emerged as promising tools for detecting structural damage in an automated fashion.Its essence relies on selecting appropriate features to train the model using the reference data set collected from the healthy structure and employing the trained model to identify outlier conditions representing the damaged state.In this paper,the coefficients and the residuals of the autoregressive model with exogenous input created using only the measured output signals are extracted as damage features.These features obtained at the baseline state for each sensor cluster are then utilized to train the one class support vector machine,an unsupervised classifier generating a decision function using only patterns belonging to this baseline state.Structural damage,once detected by the trained machine,a damage index based on comparison of the residuals between the trained class and the outlier state is implemented for localizing damage.The two-step damage assessment framework is first implemented on an eight degree-of-freedom numerical model with the effects of measurement noise integrated.Subsequently,vibration data collected from a one-story one-bay reinforced concrete frame inflicted with progressive levels of damage have been utilized to verify the accuracy and robustness of the proposed methodology.
基金supported by the National Key Research and Development Program of China(Grant No.2019YFC1509901).
文摘Slope stability analysis is a classical mechanical problem in geotechnical engineering and engineering geology.It is of great significance to study the stability evolution of expansive soil slopes for engineering construction in expansive soil areas.Most of the existing studies evaluate the slope stability by analyzing the limit equilibrium state of the slope,and the analysis method for the stability evolution considering the damage softening of the shear zone is lacking.In this study,the large deformation shear mechanical behavior of expansive soil was investigated by ring shear test.The damage softening characteristic of expansive soil in the shear zone was analyzed,and a shear damage model reflecting the damage softening behavior of expansive soil was derived based on the damage theory.Finally,by skillfully combining the vector sum method and the shear damage model,an analysis method for the stability evolution of the expansive soil slope considering the shear zone damage softening was proposed.The results show that the shear zone subjected to large displacement shear deformation exhibits an obvious damage softening phenomenon.The damage variable equation based on the logistic function can be well used to describe the shear damage characteristics of expansive soil,and the proposed shear damage model is in good agreement with the ring shear test results.The vector sum method considering the damage softening behavior of the shear zone can be well applied to analyze the stability evolution characteristics of the expansive soil slope.The stability factor of the expansive soil slope decreases with the increase of shear displacement,showing an obvious progressive failure behavior.
文摘This study introduces the Orbit Weighting Scheme(OWS),a novel approach aimed at enhancing the precision and efficiency of Vector Space information retrieval(IR)models,which have traditionally relied on weighting schemes like tf-idf and BM25.These conventional methods often struggle with accurately capturing document relevance,leading to inefficiencies in both retrieval performance and index size management.OWS proposes a dynamic weighting mechanism that evaluates the significance of terms based on their orbital position within the vector space,emphasizing term relationships and distribution patterns overlooked by existing models.Our research focuses on evaluating OWS’s impact on model accuracy using Information Retrieval metrics like Recall,Precision,InterpolatedAverage Precision(IAP),andMeanAverage Precision(MAP).Additionally,we assessOWS’s effectiveness in reducing the inverted index size,crucial for model efficiency.We compare OWS-based retrieval models against others using different schemes,including tf-idf variations and BM25Delta.Results reveal OWS’s superiority,achieving a 54%Recall and 81%MAP,and a notable 38%reduction in the inverted index size.This highlights OWS’s potential in optimizing retrieval processes and underscores the need for further research in this underrepresented area to fully leverage OWS’s capabilities in information retrieval methodologies.
基金supported by the projects of the China Geological Survey(DD20221729,DD20190291)Zhuhai Urban Geological Survey(including informatization)(MZCD–2201–008).
文摘Machine learning is currently one of the research hotspots in the field of landslide prediction.To clarify and evaluate the differences in characteristics and prediction effects of different machine learning models,Conghua District,which is the most prone to landslide disasters in Guangzhou,was selected for landslide susceptibility evaluation.The evaluation factors were selected by using correlation analysis and variance expansion factor method.Applying four machine learning methods namely Logistic Regression(LR),Random Forest(RF),Support Vector Machines(SVM),and Extreme Gradient Boosting(XGB),landslide models were constructed.Comparative analysis and evaluation of the model were conducted through statistical indices and receiver operating characteristic(ROC)curves.The results showed that LR,RF,SVM,and XGB models have good predictive performance for landslide susceptibility,with the area under curve(AUC)values of 0.752,0.965,0.996,and 0.998,respectively.XGB model had the highest predictive ability,followed by RF model,SVM model,and LR model.The frequency ratio(FR)accuracy of LR,RF,SVM,and XGB models was 0.775,0.842,0.759,and 0.822,respectively.RF and XGB models were superior to LR and SVM models,indicating that the integrated algorithm has better predictive ability than a single classification algorithm in regional landslide classification problems.
基金supported by the National Natural Science Foundation of China under Grant No. 60372022Program for New Century Excellent Talentsin University under Grant No. NCET-05-0806
文摘Signal-to-noise ratio(SNR)estimation for signal which can be modeled by Auto-regressive(AR)process is studied in this paper.First,the conventional frequency domain method is introduced to estimate the SNR for the received signal in additive white Gauss noise(AWGN)channel.Then a parametric SNR estimation algorithm is proposed by taking advantage of the AR model information of the received signal.The simulation results show that the proposed parametric method has better performance than the conventional frequency doma in method in case of AWGN channel.
文摘The wave/particle duality of particles in Physics is well known. Particles have properties that uniquely characterize them from one another, such as mass, charge and spin. Charged particles have associated Electric and Magnetic fields. Also, every moving particle has a De Broglie wavelength determined by its mass and velocity. This paper shows that all of these properties of a particle can be derived from a single wave function equation for that particle. Wave functions for the Electron and the Positron are presented and principles are provided that can be used to calculate the wave functions of all the fundamental particles in Physics. Fundamental particles such as electrons and positrons are considered to be point particles in the Standard Model of Physics and are not considered to have a structure. This paper demonstrates that they do indeed have structure and that this structure extends into the space around the particle’s center (in fact, they have infinite extent), but with rapidly diminishing energy density with the distance from that center. The particles are formed from Electromagnetic standing waves, which are stable solutions to the Schrödinger and Classical wave equations. This stable structure therefore accounts for both the wave and particle nature of these particles. In fact, all of their properties such as mass, spin and electric charge, can be accounted for from this structure. These particle properties appear to originate from a single point at the center of the wave function structure, in the same sort of way that the Shell theorem of gravity causes the gravity of a body to appear to all originate from a central point. This paper represents the first two fully characterized fundamental particles, with a complete description of their structure and properties, built up from the underlying Electromagnetic waves that comprise these and all fundamental particles.
文摘Ross’ epidemic model describing the transmission of malaria uses two classes of infection, one for humans and one for mosquitoes. This paper presents a stochastic extension of a deterministic vector-borne epidemic model based only on the class of human infectious. The consistency of the model is established by proving that the stochastic delay differential equation describing the model has a unique positive global solution. The extinction of the disease is studied through the analysis of the stability of the disease-free equilibrium state and the persistence of the model. Finally, we introduce some numerical simulations to illustrate the obtained results.
基金This study was provided by Natural Science Foundation of Guangdong Province under Grant No. 5001121the China Meteorological Administration under Grant Nos. CMATG2005Y05 and CMATG2008Z10the Guangdong Meteorological Bureau under Grant Nos. 2007A2 and GRMC2007Z03
文摘Extending the lead time of precipitation nowcasts is vital to improvements in heavy rainfall warning, flood mitigation, and water resource management. Because the TREC vector (tracking radar echo by correlation) represents only the instantaneous trend of precipitation echo motion, the approach using derived echo motion vectors to extrapolate radar reflectivity as a rainfall forecast is not satisfactory if the lead time is beyond 30 minutes. For longer lead times, the effect of ambient winds on echo movement should be considered. In this paper, an extrapolation algorithm that extends forecast lead times up to 3 hours was developed to blend TREC vectors with model-predicted winds. The TREC vectors were derived from radar reflectivity patterns in 3 km height CAPPI (constant altitude plan position indicator) mosaics through a cross-correlation technique. The background steering winds were provided by predictions of the rapid update assimilation model CHAF (cycle of hourly assimilation and forecast). A similarity index was designed to determine the vertical level at which model winds were applied in the extrapolation process, which occurs via a comparison between model winds and radar vectors. Based on a summer rainfall case study, it is found that the new algorithm provides a better forecast.
基金Project supported by the National Natural Science Foundation of China (Grant No 60573065)the Natural Science Foundation of Shandong Province,China (Grant No Y2007G33)the Key Subject Research Foundation of Shandong Province,China(Grant No XTD0708)
文摘In this paper we apply the nonlinear time series analysis method to small-time scale traffic measurement data. The prediction-based method is used to determine the embedding dimension of the traffic data. Based on the reconstructed phase space, the local support vector machine prediction method is used to predict the traffic measurement data, and the BIC-based neighbouring point selection method is used to choose the number of the nearest neighbouring points for the local support vector machine regression model. The experimental results show that the local support vector machine prediction method whose neighbouring points are optimized can effectively predict the small-time scale traffic measurement data and can reproduce the statistical features of real traffic measurements.
基金This project is supported by Special Foundation for Major State Basic Research of China (No.G1998030415).
文摘Soft sensor is widely used in industrial process control. It plays animportant role to improve the quality of product and assure safety in production. The core of softsensor is to construct soft sensing model. A new soft sensing modeling method based on supportvector machine (SVM) is proposed. SVM is a new machine learning method based on statistical learningtheory and is powerful for the problem characterized by small sample, nonlinearity, high dimensionand local minima. The proposed methods are applied to the estimation of frozen point of light dieseloil in distillation column. The estimated outputs of soft sensing model based on SVM match the realvalues of frozen point and follow varying trend of frozen point very well. Experiment results showthat SVM provides a new effective method for soft sensing modeling and has promising application inindustrial process applications.
基金Supported by the State Key Development Program for Basic Research of China (No.2002CB312200) and the National Natural Science Foundation of China (No.60574019).
文摘Multi-kernel-based support vector machine (SVM) model structure of nonlinear systems and its specific identification method is proposed, which is composed of a SVM with linear kernel function followed in series by a SVM with spline kernel function. With the help of this model, nonlinear model predictive control can be transformed to linear model predictive control, and consequently a unified analytical solution of optimal input of multi-step-ahead predictive control is possible to derive. This algorithm does not require online iterative optimization in order to be suitable for real-time control with less calculation. The simulation results of pH neutralization process and CSTR reactor show the effectiveness and advantages of the presented algorithm.
基金supported by the State Key Development Program for Basic Research of China (Grant No. 2011CBA00106)the National Natural Science Foundation of China (Grant Nos. 10674006, 81171421, and 61101046)the National High Technology Research and Development Program of China (Grant No. 2007AA03Z238)
文摘A cardiac vector model is presented and verified, and then the forward problem for cardiac magnetic fields and electric potential are discussed based on this model and the realistic human torso volume conductor model, including lungs. A torso-cardiac vector model is used for a 12-lead electrocardiographic (ECG) and magneto-cardiogram (MCG) simulation study by using the boundary element method (BEM). Also, we obtain the MCG wave picture using a compound four-channel HTc.SQUID system in a magnetically shielded room. By comparing the simulated results and experimental results, we verify the cardiac vector model and then do a preliminary study of the forward problem of MCG and ECG. Therefore, the results show that the vector model is reasonable in cardiac electrophysiology.