Artificial vegetation restoration is the main measure for vegetation restoration and soil and water conservation in alpine mine dumps on the Qinghai-Tibet Plateau,China.However,there are few reports on the dynamic cha...Artificial vegetation restoration is the main measure for vegetation restoration and soil and water conservation in alpine mine dumps on the Qinghai-Tibet Plateau,China.However,there are few reports on the dynamic changes and the influencing factors of the soil reinforcement effect of plant species after artificial vegetation restoration under different recovery periods.We selected dump areas of the Delni Copper Mine in Qinghai Province,China to study the relationship between the shear strength and the peak displacement of the root-soil composite on the slope during the recovery period,and the influence of the root traits and soil physical properties on the shear resistance characteristics of the root-soil composite via in situ direct shear tests.The results indicate that the shear strength and peak displacement of the rooted soil initially decreased and then increased with the increase of the recovery period.The shear strength of the rooted soil and the recovery period exhibited a quadratic function relationship.There is no significant function relationship between the peak displacement and the recovery period.Significant positive correlations(P<0.05)exists between the shear strength of the root-soil composite and the root biomass density,root volume density,and root area ratio,and they show significant linear correlations(P<0.05).There are no significant correlations(P>0.05)between the shear strength of the root-soil composite and the root length density,and the root volume ratio of the coarse roots to the fine roots.A significant negative linear correlation(P<0.05)exists between the peak displacement of the rooted soil and the coarse-grain content,but no significant correlations(P>0.05)with the root traits,other soil physical property indices(the moisture content and dry density of the soil),and slope gradient.The coarse-grain content is the main factor controlling the peak displacement of the rooted soil.展开更多
Basic vegetative period(BVP) is an important trait for determining flowering time and adaptation to variable environments.A short BVP barley mutant is about 30 d shorter than its wild type.Genetic analysis using 557...Basic vegetative period(BVP) is an important trait for determining flowering time and adaptation to variable environments.A short BVP barley mutant is about 30 d shorter than its wild type.Genetic analysis using 557 F 2 individuals revealed that the short BVP is governed by a single recessive gene(BVP-1) and was further validated in 2 090 F 3 individuals.The BVP-1 gene was first mapped to barley chromosome 1H using SSR markers.Comparative genomic analysis demonstrated that the chromosome region of BVP-1 is syntenic to rice chromosome 5 and Brachypodium chromosome 2.Barley ESTs/genes were identified after comparison with candidate genes in rice and Brachypodium;seven new gene-specific markers were developed and mapped in the mapping populations.The BVP-1 gene co-segregated with the Mot1 and Ftsh4 genes and was flanked by the gene-specific markers AK252360(0.2 cM) and CA608558(0.5 cM).Further analysis demonstrated that barley and wheat share the same short BVP gene controlling early flowering.展开更多
Vegetation restoration has been proposed as an effective method for increasing both plant biomass and soil carbon(C) stocks. In this study, 204 publications(733 observations) were analyzed, focusing on the effects of ...Vegetation restoration has been proposed as an effective method for increasing both plant biomass and soil carbon(C) stocks. In this study, 204 publications(733 observations) were analyzed, focusing on the effects of vegetation restoration on soil organic carbon(SOC) in China. The results showed that SOC was increased by 45.33%, 24.43%, 30.29% and 27.98% at soil depths of 0–20 cm, 20–40 cm, 40–60 cm and > 60 cm after vegetation restoration, respectively. Restoration from both cropland and non-cropland increased the SOC content. The conversion of non-cropland was more efficient in SOC accumulation than the conversion of cropland did, especially in > 40 cm layers. In addition, the conversion to planted forest led to greater SOC accumulation than that to other land use did. Conversion period and initial SOC content extended more influence on soil C accumulation as the main factors after vegetation restoration than temperature and precipitation did. The SOC content significantly increased with restoration period after long-term vegetation restoration(> 40 yr), indicating a large potential for further accumulation of carbon in the soil, which could mitigate climate change in the near future.展开更多
Research on climate changes between the last interglacial period and Holocene renders a speculation on the tendency of present climate. Fully understanding the nature of the changes will play a significant role in a b...Research on climate changes between the last interglacial period and Holocene renders a speculation on the tendency of present climate. Fully understanding the nature of the changes will play a significant role in a better understanding of global climate change. This work discussed the climate change of the last interglacial period and Holocene in Beijing area to discover the mechanism of local palaeo-climate change. The palaeo-vegetation of the last interglacial period in Xishan Mountain of Beijing was reconstructed by pollen analysis and thermo-luminescence dating to represent the change of palaeo-climate and palaeo-environment. Palaeo-vegetation indicators demonstrated that the climate change of the last interglacial period included 6 stages and was homologous to that reflected by the records from deep sea depositions and polar ice cores, respectively corresponding to Marine Isotope Stage (MIS) 5e, 5d, 5c, 5b, 5a and the interim from MIS5 to MIS4 from the early to the late. Millennial climate abrupt events occurred in MIS 5e, which had an agreement with the records of GRIP. In addition, a climate warming event appeared in the interim from MIS5 to MIS4 and it also was found in other regions of the world. Compared with the vegetation and environment indicators of Holocene in Beijing area, it was found that the vegetation, climate and environment of the last glacial period were better than those of Holocene. The climate abrupt events not only appeared in the last interglacial period and MIS 5e, but also occurred in Holocene, whose mechanism and pattern were analogical. After analyzing the records of millennial climate abrupt change events from this work, Ice Cores and others, it was concluded that climate was instability in the interglacial period.展开更多
针对目前草原植被盖度和物候期监测中存在的连续工作能力差、自动监测能力弱和精确度较低问题,将固定监测、移动监测和云平台结合,研制了一种草原植被盖度与物候智能监测系统。该系统主要由固定监测子系统、移动监测子系统以及草原物候...针对目前草原植被盖度和物候期监测中存在的连续工作能力差、自动监测能力弱和精确度较低问题,将固定监测、移动监测和云平台结合,研制了一种草原植被盖度与物候智能监测系统。该系统主要由固定监测子系统、移动监测子系统以及草原物候智能监测云平台组成。固定监测子系统主要由物候相机、供电模块、通信模块、边缘计算控制器和支撑立杆等组成,移动监测子系统主要包括手持机和应用程序。草原物候智能监测云平台基于浏览器/服务器模式架构设计,具有信息查询、数据分析、数据显示和数据共享等功能。固定监测子系统和移动监测子系统可实现草原植被图像数据的采集和上传,然后通过云服务器部署的图像处理程序自动提取草原植被指数和植被盖度并存入数据库。在此基础上,通过拟合植被指数的时间序列获得植被生长曲线,并利用TIMESAT软件提取物候参数。经测试,提出的利用过绿指数(excess green index,EXG)结合最大类间方差法分割草原植被图像进而实现草原植被盖度识别的方法获得了90%的精确度,满足草原植被盖度自动化和批量化提取需求。并且,该研究在提取相对绿度指数(green chromatic coordinate,GCC)、EXG与归一化红绿差分指数(normalized green red difference index,NGRDI)植被指数的基础上,采用Double Logistic函数拟合的植被生长曲线可以准确反映植被生长周期。该系统为草原植被数智化监测和管理提供了可靠的技术和数据支撑。展开更多
Using the modern information technology,this paper analyzes the 20 years of experimental observation data of wheat ear differentiation research team led by Professor Cui Jinmei.It reveals that in the appropriate sowin...Using the modern information technology,this paper analyzes the 20 years of experimental observation data of wheat ear differentiation research team led by Professor Cui Jinmei.It reveals that in the appropriate sowing period,there is a quartic polynomial regression relationship between the sowing period and spike primordium period,namely between duration of vegetative growth stage and the average daily temperature.It is of great significance to determining the suitable sowing period of wheat.展开更多
基金supported by the Project of Qinghai Science&Technology Department(Grant No.2021-ZJ-956Q).
文摘Artificial vegetation restoration is the main measure for vegetation restoration and soil and water conservation in alpine mine dumps on the Qinghai-Tibet Plateau,China.However,there are few reports on the dynamic changes and the influencing factors of the soil reinforcement effect of plant species after artificial vegetation restoration under different recovery periods.We selected dump areas of the Delni Copper Mine in Qinghai Province,China to study the relationship between the shear strength and the peak displacement of the root-soil composite on the slope during the recovery period,and the influence of the root traits and soil physical properties on the shear resistance characteristics of the root-soil composite via in situ direct shear tests.The results indicate that the shear strength and peak displacement of the rooted soil initially decreased and then increased with the increase of the recovery period.The shear strength of the rooted soil and the recovery period exhibited a quadratic function relationship.There is no significant function relationship between the peak displacement and the recovery period.Significant positive correlations(P<0.05)exists between the shear strength of the root-soil composite and the root biomass density,root volume density,and root area ratio,and they show significant linear correlations(P<0.05).There are no significant correlations(P>0.05)between the shear strength of the root-soil composite and the root length density,and the root volume ratio of the coarse roots to the fine roots.A significant negative linear correlation(P<0.05)exists between the peak displacement of the rooted soil and the coarse-grain content,but no significant correlations(P>0.05)with the root traits,other soil physical property indices(the moisture content and dry density of the soil),and slope gradient.The coarse-grain content is the main factor controlling the peak displacement of the rooted soil.
基金supported by the Grain Research and Development Cooperation, Australia and the Chinese Scholarship Council
文摘Basic vegetative period(BVP) is an important trait for determining flowering time and adaptation to variable environments.A short BVP barley mutant is about 30 d shorter than its wild type.Genetic analysis using 557 F 2 individuals revealed that the short BVP is governed by a single recessive gene(BVP-1) and was further validated in 2 090 F 3 individuals.The BVP-1 gene was first mapped to barley chromosome 1H using SSR markers.Comparative genomic analysis demonstrated that the chromosome region of BVP-1 is syntenic to rice chromosome 5 and Brachypodium chromosome 2.Barley ESTs/genes were identified after comparison with candidate genes in rice and Brachypodium;seven new gene-specific markers were developed and mapped in the mapping populations.The BVP-1 gene co-segregated with the Mot1 and Ftsh4 genes and was flanked by the gene-specific markers AK252360(0.2 cM) and CA608558(0.5 cM).Further analysis demonstrated that barley and wheat share the same short BVP gene controlling early flowering.
基金Under the auspices of Strategic Priority Research Program of Chinese Academy of Sciences(No.XDA05060104)
文摘Vegetation restoration has been proposed as an effective method for increasing both plant biomass and soil carbon(C) stocks. In this study, 204 publications(733 observations) were analyzed, focusing on the effects of vegetation restoration on soil organic carbon(SOC) in China. The results showed that SOC was increased by 45.33%, 24.43%, 30.29% and 27.98% at soil depths of 0–20 cm, 20–40 cm, 40–60 cm and > 60 cm after vegetation restoration, respectively. Restoration from both cropland and non-cropland increased the SOC content. The conversion of non-cropland was more efficient in SOC accumulation than the conversion of cropland did, especially in > 40 cm layers. In addition, the conversion to planted forest led to greater SOC accumulation than that to other land use did. Conversion period and initial SOC content extended more influence on soil C accumulation as the main factors after vegetation restoration than temperature and precipitation did. The SOC content significantly increased with restoration period after long-term vegetation restoration(> 40 yr), indicating a large potential for further accumulation of carbon in the soil, which could mitigate climate change in the near future.
文摘Research on climate changes between the last interglacial period and Holocene renders a speculation on the tendency of present climate. Fully understanding the nature of the changes will play a significant role in a better understanding of global climate change. This work discussed the climate change of the last interglacial period and Holocene in Beijing area to discover the mechanism of local palaeo-climate change. The palaeo-vegetation of the last interglacial period in Xishan Mountain of Beijing was reconstructed by pollen analysis and thermo-luminescence dating to represent the change of palaeo-climate and palaeo-environment. Palaeo-vegetation indicators demonstrated that the climate change of the last interglacial period included 6 stages and was homologous to that reflected by the records from deep sea depositions and polar ice cores, respectively corresponding to Marine Isotope Stage (MIS) 5e, 5d, 5c, 5b, 5a and the interim from MIS5 to MIS4 from the early to the late. Millennial climate abrupt events occurred in MIS 5e, which had an agreement with the records of GRIP. In addition, a climate warming event appeared in the interim from MIS5 to MIS4 and it also was found in other regions of the world. Compared with the vegetation and environment indicators of Holocene in Beijing area, it was found that the vegetation, climate and environment of the last glacial period were better than those of Holocene. The climate abrupt events not only appeared in the last interglacial period and MIS 5e, but also occurred in Holocene, whose mechanism and pattern were analogical. After analyzing the records of millennial climate abrupt change events from this work, Ice Cores and others, it was concluded that climate was instability in the interglacial period.
文摘针对目前草原植被盖度和物候期监测中存在的连续工作能力差、自动监测能力弱和精确度较低问题,将固定监测、移动监测和云平台结合,研制了一种草原植被盖度与物候智能监测系统。该系统主要由固定监测子系统、移动监测子系统以及草原物候智能监测云平台组成。固定监测子系统主要由物候相机、供电模块、通信模块、边缘计算控制器和支撑立杆等组成,移动监测子系统主要包括手持机和应用程序。草原物候智能监测云平台基于浏览器/服务器模式架构设计,具有信息查询、数据分析、数据显示和数据共享等功能。固定监测子系统和移动监测子系统可实现草原植被图像数据的采集和上传,然后通过云服务器部署的图像处理程序自动提取草原植被指数和植被盖度并存入数据库。在此基础上,通过拟合植被指数的时间序列获得植被生长曲线,并利用TIMESAT软件提取物候参数。经测试,提出的利用过绿指数(excess green index,EXG)结合最大类间方差法分割草原植被图像进而实现草原植被盖度识别的方法获得了90%的精确度,满足草原植被盖度自动化和批量化提取需求。并且,该研究在提取相对绿度指数(green chromatic coordinate,GCC)、EXG与归一化红绿差分指数(normalized green red difference index,NGRDI)植被指数的基础上,采用Double Logistic函数拟合的植被生长曲线可以准确反映植被生长周期。该系统为草原植被数智化监测和管理提供了可靠的技术和数据支撑。
基金Supported by National"12th Five-year Plan"Technology Support Program(2014BAD10B06)Major Research Project in Henan Province(30600341)
文摘Using the modern information technology,this paper analyzes the 20 years of experimental observation data of wheat ear differentiation research team led by Professor Cui Jinmei.It reveals that in the appropriate sowing period,there is a quartic polynomial regression relationship between the sowing period and spike primordium period,namely between duration of vegetative growth stage and the average daily temperature.It is of great significance to determining the suitable sowing period of wheat.