China removed fertilizer manufacturing subsidies from 2015 to 2018 to bolster market-oriented reforms and foster environmentally sustainable practices.However,the impact of this policy reform on food security and the ...China removed fertilizer manufacturing subsidies from 2015 to 2018 to bolster market-oriented reforms and foster environmentally sustainable practices.However,the impact of this policy reform on food security and the environment remains inadequately evaluated.Moreover,although green and low-carbon technologies offer environmental advantages,their widespread adoption is hindered by prohibitively high costs.This study analyzes the impact of removing fertilizer manufacturing subsidies and explores the potential feasibility of redirecting fertilizer manufacturing subsidies to invest in the diffusion of these technologies.Utilizing the China Agricultural University Agri-food Systems model,we analyzed the potential for achieving mutually beneficial outcomes regarding food security and environmental sustainability.The findings indicate that removing fertilizer manufacturing subsidies has reduced greenhouse gas(GHG)emissions from agricultural activities by 3.88 million metric tons,with minimal impact on food production.Redirecting fertilizer manufacturing subsidies to invest in green and low-carbon technologies,including slow and controlled-release fertilizer,organic-inorganic compound fertilizers,and machine deep placement of fertilizer,emerges as a strategy to concurrently curtail GHG emissions,ensure food security,and secure robust economic returns.Finally,we propose a comprehensive set of government interventions,including subsidies,field guidance,and improved extension systems,to promote the widespread adoption of these technologies.展开更多
Partial substitution of inorganic fertilizers with organic amendments is an important agricultural management practice.An 11-year field experiment(22 cropping periods)was carried out to analyze the impacts of differen...Partial substitution of inorganic fertilizers with organic amendments is an important agricultural management practice.An 11-year field experiment(22 cropping periods)was carried out to analyze the impacts of different partial substitution treatments on crop yields and the transformation of nitrogen fractions in greenhouse vegetable soil.Four treatments with equal N,P_(2)O_(5),and K_(2)O inputs were selected,including complete inorganic fertilizer N(CN),50%inorganic fertilizer N plus 50%pig manure N(CPN),50%inorganic fertilizer N plus 25%pig manure N and 25%corn straw N(CPSN),and 50%inorganic fertilizer N plus 50%corn straw N(CSN).Organic substitution treatments tended to increase crop yields since the 6th cropping period compared to the CN treatment.From the 8th to the 22nd cropping periods,the highest yields were observed in the CPSN treatment where yields were 7.5-11.1%greater than in CN treatment.After 11-year fertilization,compared to CN,organic substitution treatments significantly increased the concentrations of NO_(3)^(-)-N,NH_(4)^(+)-N,acid hydrolysis ammonium-N(AHAN),amino acid-N(AAN),amino sugar-N(ASN),and acid hydrolysis unknown-N(AHUN)in soil by 45.0-69.4,32.8-58.1,49.3-66.6,62.0-69.5,34.5-100.3,and 109.2-172.9%,respectively.Redundancy analysis indicated that soil C/N and OC concentration significantly affected the distribution of N fractions.The highest concentrations of NO_(3)^(-)-N,AHAN,AAN,AHUN were found in the CPSN treatment.Organic substitution treatments increased the activities ofβ-glucosidase,β-cellobiosidase,N-acetyl-glucosamidase,L-aminopeptidase,and phosphatase in the soil.Organic substitution treatments reduced vector length and increased vector angle,indicating alleviation of constraints of C and N on soil microorganisms.Organic substitution treatments increased the total concentrations of phospholipid fatty acids(PLFAs)in the soil by 109.9-205.3%,and increased the relative abundance of G^(+)bacteria and fungi taxa,but decreased the relative abundance of G-bacteria,total bacteria,and actinomycetes.Overall,long-term organic substitution management increased soil OC concentration,C/N,and the microbial population,the latter in turn positively influenced soil enzyme activity.Enhanced microorganism numbers and enzyme activity enhanced soil N sequestration by transforming inorganic N to acid hydrolysis-N(AHN),and enhanced soil N supply capacity by activating non-acid hydrolysis-N(NAHN)to AHN,thus improving vegetable yield.Application of inorganic fertilizer,manure,and straw was a more effective fertilization model for achieving sustainable greenhouse vegetable production than application of inorganic fertilizer alone.展开更多
In aquaculture,co-culturing rice with fish may mitigate greenhouse-gas emissions.In this study,co-culture of four rice cultivars in a laboratory-scale rice–fish system reduced CH_(4)and N_(2)O emissions relative to f...In aquaculture,co-culturing rice with fish may mitigate greenhouse-gas emissions.In this study,co-culture of four rice cultivars in a laboratory-scale rice–fish system reduced CH_(4)and N_(2)O emissions relative to fish monoculture.Differences in CH_(4)and N_(2)O emissions among rice cultivars primarily stem from the differential effects of rice plants on plant-mediated CH_(4)transport,CH_(4)oxidation and nitrogen absorption.展开更多
This study addresses the pressing need for energy-efficient greenhouse management by focusing on the innovative application of natural ventilation.The primary objective of this study is to evaluate various ventilation...This study addresses the pressing need for energy-efficient greenhouse management by focusing on the innovative application of natural ventilation.The primary objective of this study is to evaluate various ventilation strategies to enhance energy efficiency and optimize crop production in agricultural greenhouses.Employing advanced numerical simulation tools,the study conducts a comprehensive assessment of natural ventilation’s effectiveness under real-world conditions.The results underscore the crucial role of the stack effect and strategic window positioning in greenhouse cooling,providing valuable insights for greenhouse designers.Our findings shed light on the significant benefits of optimized ventilation and also offer practical implications for improving greenhouse design,ensuring sustainable and efficient agricultural practices.The study demonstrated energy savings in cooling from November to April,with a maximum saving of 680 kWh in March,indicating the effectiveness of strategically positioning windows to leverage the stack effect.This approach enhances plant growth and reduces the need for costly cooling systems,thereby improving overall energy efficiency and lowering operational expenses.展开更多
The analysis of Greenhouse Effect experiments in the public domain indicated that the lab tests were primarily centered around illustrating the mechanics of conventional greenhouses. They used high-energy visible ligh...The analysis of Greenhouse Effect experiments in the public domain indicated that the lab tests were primarily centered around illustrating the mechanics of conventional greenhouses. They used high-energy visible light (such as sunlight), rather than addressing the Greenhouse Effect, which involves low-energy infrared radiation emitted by the Earth’s surface. Studies with argon, a non-greenhouse gas with similar density to CO2, showed thermal heat transfer as the dominant factor in the temperature profiles, with radiation absorption being undetected. The same conclusion was drawn by another study, which measured infrared back radiation. Experiments using exaggerated CO2 concentrations inadvertently illustrated the principle of the Popper Falsification Test by disproving the Greenhouse Effect applicable to CO2 within the troposphere. A straightforward kitchen test showed that a microwave oven cannot be used as a model for the Greenhouse Effect.展开更多
The micro-sprinkler irrigation mulched(MSM)has been suggested as a novel water-saving approach in con-trolled environment agriculture.However,the effects of microbial community structure and enzyme activity in the rhi...The micro-sprinkler irrigation mulched(MSM)has been suggested as a novel water-saving approach in con-trolled environment agriculture.However,the effects of microbial community structure and enzyme activity in the rhizosphere soil on crop growth under MSM remain unclear.This study conducted a randomized experimen-tal design using greenhouse tomatoes to investigate changes in bacterial community structure and enzyme activity in rhizosphere soil under different irrigation frequencies(F)and amounts(I)of MSM.Thefindings revealed that with the increase of F or I,The total count of soil bacteria in tomatoesfirst rose and then fell in terms of Opera-tional Taxonomic Units(OTUs)classification.Compared to other F,the most abundance of nitrogen and phos-phorus metabolism genes and enzyme activities were observed with a 5-day F.Moreover,the diversity of soil bacterial community structure initially rose before eventually declining with the increase of the I.Applying 1.00 Epan(cumulative evaporation of a 20 cm standard pan)under MSM helped boost the abundance of nitrogen and phosphorus metabolism functional genes in soil bacteria,ensuring higher enzyme activities related to nitro-gen,carbon,and phosphorus metabolism in the rhizosphere soil of tomatoes.Tomatoes’yield initially rose before eventually declining with the increase in F or I,whereas I had a more significant effect on yield.A 1.00%increase in I yielded a minimum of 39.24%increase in tomato yield.The study showed a positive correlation between soil bacterial community,soil enzyme activity,and greenhouse tomato yield under MSM.Considering the results comprehensively,the combined irrigation mode of F of 5 d and I of 1.00 Epan was recommended for greenhouse tomatoes under MSM.This conclusion provides theoretical support for water-saving practices and yield improve-ment in facility agriculture,especially tomato cultivation.展开更多
The production environment of greenhouse cultivation is relatively closed,the multiple cropping index is high,the management of fertilizationwatering and pesticideapplication isblindtosomeextent,andthe phenomenonofcon...The production environment of greenhouse cultivation is relatively closed,the multiple cropping index is high,the management of fertilizationwatering and pesticideapplication isblindtosomeextent,andthe phenomenonofcontinuous cropping isalsocommonSoilquali-ty affects the sustainable development of greenhouse cultivation.Earthworm is a ubiquitous invertebrate organism in soil,an important part of soil system,a link between terrestrial organisms and soil organisms,an important link in the small cycle of soil material organisms,and plays an important role in maintaining the structure and function of soil ecosystem.Different ecotypes of earthworms are closely related to their habi-tats(soil layers)and food resource preferences,and then affect their ecological functions.The principle of earthworm regulating soil function is essentially the close connection and interaction between earthworm and soil microorganism.Using different ecotypes of earthworms and bio-logical agents to carry out combined remediation of greenhouse cultivation soil is a technical model to realize sustainable development of green-house cultivation.展开更多
Microplastics can influence global climate change by regulating the emissions of greenhouse gases from different ecosystems. The effects of microplastics in terrestrial ecosystems are still not well studied particular...Microplastics can influence global climate change by regulating the emissions of greenhouse gases from different ecosystems. The effects of microplastics in terrestrial ecosystems are still not well studied particularly greenhouse gases emissions. Thus, we conducted a laboratory experiment over a period of 90 days with two types of microplastics (differing in their chemical structure), high density polyethylene (HDPE) and low density polyethylene (LDPE), which were applied to the soil at a rate of 0% to 0.1% (w/w). The overarching aim was to investigate the effects of microplastic type, microplastic concentration and days of exposure on greenhouse gases emissions. We also used original and artificially weathered microplastics (the same HDPE and LDPE) to make a comparison of greenhouse gases emissions between the original microplastics treated soils and the soils treated with weathered microplastics. Our findings showed that HDPE and LDPE microplastics significantly increased the emissions of greenhouse gases from the soil than that of the control soils. Emissions were increased with the increases in the level of microplastic in the soil. The weathered microplastic emitted greater quantity of greenhouse gases compared to that of the original microplastics. In contrast to a low initial emission quantity, the emissions were gradually increased at the termination of the experiment. Our experiment on the emissions of greenhouse gases from the soil vis-à-vis microplastic additions indicated that the microplastic increased the emissions of greenhouse gases in terrestrial ecosystems, and pervasive microplastic impacts may have consequences for the global climate change. Greenhouse gases emissions from the soil not only depend on the type and concentration of the microplastic, but also on the days of exposure to the microplastic.展开更多
Design and Development of a Parabolic Trough Solar Air Heater (PTSAH) for a Greenhouse Dryer (GD) was done to improve the dryer’s performance. The materials used for the fabrication of the PTSAH included galvanized s...Design and Development of a Parabolic Trough Solar Air Heater (PTSAH) for a Greenhouse Dryer (GD) was done to improve the dryer’s performance. The materials used for the fabrication of the PTSAH included galvanized sheets covered with aluminium foil, an absorber tube made of GI pipe painted matt black to increase heat absorbance at the focal line, mild steel square tubes, shutter plywood, and an axial fan to push air through the absorber tube. Key geometrical parameters used for the design of the PTSAH were a rim angle of 98 degrees, focal length of 0.2608 m, height of 0.3451 m, length of 2 m, and an aperture width of 1.2 m. The PTSAH’s total aperture surface area was 2.4 m2, while its absorber tube surface area was 0.1587 m2. The PTSAH was experimentally tested to establish its thermal performance. It was found that the ambient air recorded an average value of 31.1˚C and that the air heater could increase the air temperature by 45.6˚C above ambient with a thermal efficiency of 5.3%. It can, therefore, be concluded that the PTSAH can significantly improve the performance of a GD by supplying the GD with air at a higher temperature than ambient.展开更多
The present paper first investigates the collapse behavior of a conventional pipe-framed greenhouse under snow loading based on a 3-D finite element analysis,in which both geometrical and material non-linearities are ...The present paper first investigates the collapse behavior of a conventional pipe-framed greenhouse under snow loading based on a 3-D finite element analysis,in which both geometrical and material non-linearities are considered.Three snow load distribution patterns related to the wind-driven snow particle movement are used in the analysis.It is found that snow load distribution affects the deformation and collapse behavior of the pipe-framed greenhouse significantly.The results obtained in this study are consistent with the actual damage observed.Next,discussion is made of the effects of reinforcements by adding members to the basic frame on the strength of the whole structure,in which seven kinds of reinforcement methods are examined.A buckling analysis is also carried out.The results indicate that the most effective reinforcement method depends on the snow load distribution pattern.展开更多
[Objective] This study was to investigate the effects of different irrigation amount on water consumption and water use efficiency of greenhouse cucumber.[Method]Under the condition of drip irrigation with different w...[Objective] This study was to investigate the effects of different irrigation amount on water consumption and water use efficiency of greenhouse cucumber.[Method]Under the condition of drip irrigation with different water amounts in sunlight greenhouse of the arid areas in Ningxia,the soil water was measured and the water consumption of crop was calculated.[Result]When irrigation amount was 563 mm,the water consumption as a whole gradually increased with the delay of growth period,reached peak during the thriving stage of fruit setting,and then gradually declined;in each treatment,the daily water consumption increased with the increasing of irrigation amount during each growth period.However,the consumption of soil moisture reduced with the significant increase of irrigation.563 mm of irrigation amount could meet the water requirements of cucumber and began to add water to soil,and water utilization efficiency could reach 33.4 kg/m3.[Conclusion]The research had provided theoretical basis for water management in the production process of greenhouse cucumber.展开更多
[Objective] This study aimed to investigate the effect of direct-seeding with non-flooding and wheat residue returning patterns on greenhouse gas emission from rice paddy. [Method] Two rice cultivars currently used in...[Objective] This study aimed to investigate the effect of direct-seeding with non-flooding and wheat residue returning patterns on greenhouse gas emission from rice paddy. [Method] Two rice cultivars currently used in the production, Yangdao 6 (an indica) and Yangjing 4038 (a japonica), were field grown using a direct-seeding method, and four treatments, wheat straw incorporation into soil and traditional flooding (SlF), non-flooding and wheat straw mulching (NSM), non-flooding and wheat straw incorporation into soil (NSl) and traditional flooding (no straw returned, Control, TF), were imposed after sowing to maturity. Effects of direct-seeding with non-flooding and wheat residue returning patterns on CH4, N20 and CO2 emissions were investigated by using the method of static chamber-gas chromatographic tech- niques. [Result] Grain yield showed no significant difference between non-flooding and flooding treatments, but was significantly higher under the SlF than under any other treatments. The emission flux of CH4 and CO2 under TF and SlF exhibited a single peak curve, while changed little under the NSl and NSM The emission flux of N2Oshowed multiple perk curves for all the treatments. Compared with TF, SlF significantly increased mean emission flux of CH4 or N2O, decreased emission of N20, while NSl and NSM significantly decreased the mean emission flux of OH4, and increased emission flux of N2O and CO2. SIF also increased Green Warm Potential (GWP) of CH4, N2O and CO2 and the GWP per unit grain yield by 47.3%- 53.7% and 32.2%-39.4%, respectively. Both NSl and NSM decreased GWP by 24.2%-29.6% and 30.1%-35.5%, and the GWP per unit grain yield was decreased by 21.7-27.2% and 25.6%-31.1%, respectively. [Conelusion] both NSl and NSM could significantly reduce greenhouse effect of CH4, N2O and CO2 meanwhile maintain a high grain yield.展开更多
The solar greenhouse's construction and its demand on meteorological service in the process of production management in China were analyzed,and the current situation of meteorological service on it was summarized....The solar greenhouse's construction and its demand on meteorological service in the process of production management in China were analyzed,and the current situation of meteorological service on it was summarized.Combined with the trend of related technology,the future development of solar greenhouse meteorological service was prospected.展开更多
In order to analyze the ventilation and cooling performance of single-tunnel plastic greenhouse in Yangtze-Huai region, the effects of two different ventilation modes (side window, side window+roof window) on the t...In order to analyze the ventilation and cooling performance of single-tunnel plastic greenhouse in Yangtze-Huai region, the effects of two different ventilation modes (side window, side window+roof window) on the temperature and humidity of plastic greenhouse were studied. The results showed that the ventilation mode of opening side window and roof window could effectively reduce the temperature and humidity at the plant canopy height, which was conducive to the growth of plant in greenhouse.展开更多
To study the effects of superphosphate(SP) on the NH_3 and greenhouse gas emissions,vegetable waste composting was performed for 27 days using 6 different treatments. In addition to the controls,five vegetable waste...To study the effects of superphosphate(SP) on the NH_3 and greenhouse gas emissions,vegetable waste composting was performed for 27 days using 6 different treatments. In addition to the controls,five vegetable waste mixtures(0.77m^3 each) were treated with different amounts of the SP additive, namely, 5%, 10%,15%, 20% and 25%. The ammonia volatilization loss and greenhouse gas emissions were measured during composting.Results indicated that the SP additive significantly decreased the ammonia volatilization and greenhouse gas emissions during vegetable waste composting. The additive reduced the total NH_3 emission by 4.0% to 16.7%. The total greenhouse gas emissions(CO_2-eq) of all treatments with SP additives were decreased by 10.2% to 20.8%, as compared with the controls. The NH_3 emission during vegetable waste composting had the highest contribution to the greenhouse effect caused by the four different gases.The amount of NH_3(CO_2-eq)from each treatment ranged from 59.90 to 81.58 kg/t; NH_3(CO_2-eq) accounted for 69% to 77% of the total emissions from the four gases. Therefore, SP is a cost-effective phosphorus-based fertilizer that can be used as an additive during vegetable waste composting to reduce the NH_3 and greenhouse gas emissions as well as to improve the value of compost as a fertilizer.展开更多
Referring to a large number of literatures, the effects of bagging, reflective film and greenhouse film on fruit size of peach were reviewed in this paper so as to provide basis for conducting relevant researches and ...Referring to a large number of literatures, the effects of bagging, reflective film and greenhouse film on fruit size of peach were reviewed in this paper so as to provide basis for conducting relevant researches and producing larger fruits. The effects of different types of bags on fruit size of peach were analyzed. The weight variation of single fruit after bagged was investigated, and the relevant reasons were analyzed. In addition, the complexity of effect of greenhouse film on fruit size was also discussed. It is proposed that further comprehensive study on effect of bagging on fruit size should be carried out.展开更多
[Objective] This study compared the leaf photosynthetic characteristics of Turpan grape cultivated in greenhouses and open field to provide a scientific basis for the high-quality and high-yield cultivation of grape. ...[Objective] This study compared the leaf photosynthetic characteristics of Turpan grape cultivated in greenhouses and open field to provide a scientific basis for the high-quality and high-yield cultivation of grape. [Method] Two precocious grape varieties as experimental materials were cultivated in greenhouses and open field, and their net photosynthetic rates (Pn), photo-response curves and CO2 response curves were determined using Li-400XT portable photosynthesis system. [Result] The leaf Pn of the two varieties cultivated in open field was higher than that in greenhouse. The Pn of Hongqitezao cultivated in open field was the highest, up to 19.79 μmol/(m^2·s); in the photo-response curves, Hongqitezao cultivated in greenhouse had the largest Pnmax and apparent quantum yield (AQY), while the Flame Seedless in greenhouse had the smallest light compensation point (LCP). The light saturation point (LSP) value of greenhouse cultivation was higher than that of open field cultivation. In the CO2 response test, the dark respiration rate (Rd) and Pnmax of greenhouse cultivation were higher than those of open field cultivation, and the carboxylation efficiency (CE) of greenhouse cultivation was lower than that of open field cultivation; the CO2 compensation point (CCP) and CO2 saturation point (CSP) of greenhouse cultivation were lower than those of open field cultivation. [Conclusion] The utilization of elevated light in greenhouse cultivation was more efficient than in open field cultivation; however, the utilization of elevated CO2 in greenhouse cultivation was weaker than tin open field cultivation.展开更多
The integration of water and fertilizer is a comprehensive technology combined irrigation and fertilizer, which has outstanding advantages of saving fertilizer, saving water, saving labor, protecting environment, high...The integration of water and fertilizer is a comprehensive technology combined irrigation and fertilizer, which has outstanding advantages of saving fertilizer, saving water, saving labor, protecting environment, high yield and high efficiency. Currently, most of the water and fertilizer integrated irrigation and fertilization and irrigation operation in the production-based greenhouse is achieved relying on artificial experience, which is hard to achieve timely, scientific and intelligent irrigation. In this study, the application of STM32 embedded system realized the real-time collection of the data from the humidity sensors buried in top, middle and low depth of soil, and water and fertilizer integrated irrigation work was completed in the greenhouse through automatic control according to the predetermined fertilization and irrigation strategies for different crops. Moreover, the system had remote monitoring function, which used the global system for mobile (GSM) module to provide users with remote short message services, and therefore, the users could not only achieve the remote intelligent monitoring on the irrigation, light, ventilation of the greenhouse through short messages, but also could start and stop the remote control system operation, so as to realize the automatic management of the greenhouse environment, achieving the purpose of remote fertilization and water-saving irrigation.展开更多
ln order to explore the design and construction of cucumber powdery mildew warning system in solar greenhouse, internet of things technology was used to conduct the real-time dynamic monitoring of the incidence of cuc...ln order to explore the design and construction of cucumber powdery mildew warning system in solar greenhouse, internet of things technology was used to conduct the real-time dynamic monitoring of the incidence of cucumber powdery mildew and cucumber growth environment in solar greenhouse. The growth environ-ment included temperature and humidity of air and soil. Logistic regression model was used to construct cucumber powdery mildew warning model. The results showed that humidity characteristic variable (maximum air humidity) and temperature characteristic variable (maximum air temperature) had significant effects on the inci-dence probability of cucumber powdery mildew in solar greenhouse. And it was fea-sible to construct cucumber powdery mildew warning system in solar greenhouse with internet of things.展开更多
By taking the Agricultural Greenhouse Park in Songjiang District,Tianjin City for an example,the construction principles of this park were introduced,such as "ecological","economic","landscapi...By taking the Agricultural Greenhouse Park in Songjiang District,Tianjin City for an example,the construction principles of this park were introduced,such as "ecological","economic","landscaping","satisfying functional demands","popularization of science" and "organic combination of emotions and plants".The park was divided into 4 parts:"New Agricultural Technology","Vegetable Tree","Southland Orchard" and "Vegetable Bar".Landscape layouts,design schemes and plant furnishings in each garden were respectively analyzed.Functions of the greenhouse park such as popularization of science,recreation and entertainment were highlighted as well as its characteristics of "combining artificial landscapes and hi-new agriculture,integrating art and agriculture",so as to provide practical references for the future planning and design of such parks.展开更多
基金The authors acknowledge the financial support received from the National Natural Science Foundation of China(72061147002).
文摘China removed fertilizer manufacturing subsidies from 2015 to 2018 to bolster market-oriented reforms and foster environmentally sustainable practices.However,the impact of this policy reform on food security and the environment remains inadequately evaluated.Moreover,although green and low-carbon technologies offer environmental advantages,their widespread adoption is hindered by prohibitively high costs.This study analyzes the impact of removing fertilizer manufacturing subsidies and explores the potential feasibility of redirecting fertilizer manufacturing subsidies to invest in the diffusion of these technologies.Utilizing the China Agricultural University Agri-food Systems model,we analyzed the potential for achieving mutually beneficial outcomes regarding food security and environmental sustainability.The findings indicate that removing fertilizer manufacturing subsidies has reduced greenhouse gas(GHG)emissions from agricultural activities by 3.88 million metric tons,with minimal impact on food production.Redirecting fertilizer manufacturing subsidies to invest in green and low-carbon technologies,including slow and controlled-release fertilizer,organic-inorganic compound fertilizers,and machine deep placement of fertilizer,emerges as a strategy to concurrently curtail GHG emissions,ensure food security,and secure robust economic returns.Finally,we propose a comprehensive set of government interventions,including subsidies,field guidance,and improved extension systems,to promote the widespread adoption of these technologies.
基金supported by the earmarked fund for China Agriculture Research System(CARS-23-B04)the National Key Research and Development Program of China(2016YFD0201001)HAAFS Science and Technology Innovation Special Project,China(2022KJCXZX-ZHS-2).
文摘Partial substitution of inorganic fertilizers with organic amendments is an important agricultural management practice.An 11-year field experiment(22 cropping periods)was carried out to analyze the impacts of different partial substitution treatments on crop yields and the transformation of nitrogen fractions in greenhouse vegetable soil.Four treatments with equal N,P_(2)O_(5),and K_(2)O inputs were selected,including complete inorganic fertilizer N(CN),50%inorganic fertilizer N plus 50%pig manure N(CPN),50%inorganic fertilizer N plus 25%pig manure N and 25%corn straw N(CPSN),and 50%inorganic fertilizer N plus 50%corn straw N(CSN).Organic substitution treatments tended to increase crop yields since the 6th cropping period compared to the CN treatment.From the 8th to the 22nd cropping periods,the highest yields were observed in the CPSN treatment where yields were 7.5-11.1%greater than in CN treatment.After 11-year fertilization,compared to CN,organic substitution treatments significantly increased the concentrations of NO_(3)^(-)-N,NH_(4)^(+)-N,acid hydrolysis ammonium-N(AHAN),amino acid-N(AAN),amino sugar-N(ASN),and acid hydrolysis unknown-N(AHUN)in soil by 45.0-69.4,32.8-58.1,49.3-66.6,62.0-69.5,34.5-100.3,and 109.2-172.9%,respectively.Redundancy analysis indicated that soil C/N and OC concentration significantly affected the distribution of N fractions.The highest concentrations of NO_(3)^(-)-N,AHAN,AAN,AHUN were found in the CPSN treatment.Organic substitution treatments increased the activities ofβ-glucosidase,β-cellobiosidase,N-acetyl-glucosamidase,L-aminopeptidase,and phosphatase in the soil.Organic substitution treatments reduced vector length and increased vector angle,indicating alleviation of constraints of C and N on soil microorganisms.Organic substitution treatments increased the total concentrations of phospholipid fatty acids(PLFAs)in the soil by 109.9-205.3%,and increased the relative abundance of G^(+)bacteria and fungi taxa,but decreased the relative abundance of G-bacteria,total bacteria,and actinomycetes.Overall,long-term organic substitution management increased soil OC concentration,C/N,and the microbial population,the latter in turn positively influenced soil enzyme activity.Enhanced microorganism numbers and enzyme activity enhanced soil N sequestration by transforming inorganic N to acid hydrolysis-N(AHN),and enhanced soil N supply capacity by activating non-acid hydrolysis-N(NAHN)to AHN,thus improving vegetable yield.Application of inorganic fertilizer,manure,and straw was a more effective fertilization model for achieving sustainable greenhouse vegetable production than application of inorganic fertilizer alone.
基金supported by the National Natural Science Foundation of China(42177455)“Pioneer”and“Leading Goose”R&D Program of Zhejiang(2022C02008 and 2022C02058)+1 种基金Central Public-interest Scientific Institution Basal Research Fund(CPSIBRF-CNRRI-202305)the Agricultural Science and Technology Innovation Program(ASTIP)。
文摘In aquaculture,co-culturing rice with fish may mitigate greenhouse-gas emissions.In this study,co-culture of four rice cultivars in a laboratory-scale rice–fish system reduced CH_(4)and N_(2)O emissions relative to fish monoculture.Differences in CH_(4)and N_(2)O emissions among rice cultivars primarily stem from the differential effects of rice plants on plant-mediated CH_(4)transport,CH_(4)oxidation and nitrogen absorption.
文摘This study addresses the pressing need for energy-efficient greenhouse management by focusing on the innovative application of natural ventilation.The primary objective of this study is to evaluate various ventilation strategies to enhance energy efficiency and optimize crop production in agricultural greenhouses.Employing advanced numerical simulation tools,the study conducts a comprehensive assessment of natural ventilation’s effectiveness under real-world conditions.The results underscore the crucial role of the stack effect and strategic window positioning in greenhouse cooling,providing valuable insights for greenhouse designers.Our findings shed light on the significant benefits of optimized ventilation and also offer practical implications for improving greenhouse design,ensuring sustainable and efficient agricultural practices.The study demonstrated energy savings in cooling from November to April,with a maximum saving of 680 kWh in March,indicating the effectiveness of strategically positioning windows to leverage the stack effect.This approach enhances plant growth and reduces the need for costly cooling systems,thereby improving overall energy efficiency and lowering operational expenses.
文摘The analysis of Greenhouse Effect experiments in the public domain indicated that the lab tests were primarily centered around illustrating the mechanics of conventional greenhouses. They used high-energy visible light (such as sunlight), rather than addressing the Greenhouse Effect, which involves low-energy infrared radiation emitted by the Earth’s surface. Studies with argon, a non-greenhouse gas with similar density to CO2, showed thermal heat transfer as the dominant factor in the temperature profiles, with radiation absorption being undetected. The same conclusion was drawn by another study, which measured infrared back radiation. Experiments using exaggerated CO2 concentrations inadvertently illustrated the principle of the Popper Falsification Test by disproving the Greenhouse Effect applicable to CO2 within the troposphere. A straightforward kitchen test showed that a microwave oven cannot be used as a model for the Greenhouse Effect.
基金funded by the Natural Science Foundation of China(No.41807041)the Science and Technology Research Project of Henan Province(242102111101)the Mechanical Design,Manufacturing,and Automation Key Discipline of Henan Province(JG[2018]No.119).
文摘The micro-sprinkler irrigation mulched(MSM)has been suggested as a novel water-saving approach in con-trolled environment agriculture.However,the effects of microbial community structure and enzyme activity in the rhizosphere soil on crop growth under MSM remain unclear.This study conducted a randomized experimen-tal design using greenhouse tomatoes to investigate changes in bacterial community structure and enzyme activity in rhizosphere soil under different irrigation frequencies(F)and amounts(I)of MSM.Thefindings revealed that with the increase of F or I,The total count of soil bacteria in tomatoesfirst rose and then fell in terms of Opera-tional Taxonomic Units(OTUs)classification.Compared to other F,the most abundance of nitrogen and phos-phorus metabolism genes and enzyme activities were observed with a 5-day F.Moreover,the diversity of soil bacterial community structure initially rose before eventually declining with the increase of the I.Applying 1.00 Epan(cumulative evaporation of a 20 cm standard pan)under MSM helped boost the abundance of nitrogen and phosphorus metabolism functional genes in soil bacteria,ensuring higher enzyme activities related to nitro-gen,carbon,and phosphorus metabolism in the rhizosphere soil of tomatoes.Tomatoes’yield initially rose before eventually declining with the increase in F or I,whereas I had a more significant effect on yield.A 1.00%increase in I yielded a minimum of 39.24%increase in tomato yield.The study showed a positive correlation between soil bacterial community,soil enzyme activity,and greenhouse tomato yield under MSM.Considering the results comprehensively,the combined irrigation mode of F of 5 d and I of 1.00 Epan was recommended for greenhouse tomatoes under MSM.This conclusion provides theoretical support for water-saving practices and yield improve-ment in facility agriculture,especially tomato cultivation.
基金Supported by Key Scientific Research Project in Colleges and Universities of Henan Province(22B180011)Project of Henan Provincial Department of Science and Technology(232102320262)+1 种基金Education and Teaching Reform Research Project of Pingdingshan University(2021-JY55)Key Demonstration Course of Pingdingshan University in 2022——Comprehensive Experiment of Environmental Biology.
文摘The production environment of greenhouse cultivation is relatively closed,the multiple cropping index is high,the management of fertilizationwatering and pesticideapplication isblindtosomeextent,andthe phenomenonofcontinuous cropping isalsocommonSoilquali-ty affects the sustainable development of greenhouse cultivation.Earthworm is a ubiquitous invertebrate organism in soil,an important part of soil system,a link between terrestrial organisms and soil organisms,an important link in the small cycle of soil material organisms,and plays an important role in maintaining the structure and function of soil ecosystem.Different ecotypes of earthworms are closely related to their habi-tats(soil layers)and food resource preferences,and then affect their ecological functions.The principle of earthworm regulating soil function is essentially the close connection and interaction between earthworm and soil microorganism.Using different ecotypes of earthworms and bio-logical agents to carry out combined remediation of greenhouse cultivation soil is a technical model to realize sustainable development of green-house cultivation.
文摘Microplastics can influence global climate change by regulating the emissions of greenhouse gases from different ecosystems. The effects of microplastics in terrestrial ecosystems are still not well studied particularly greenhouse gases emissions. Thus, we conducted a laboratory experiment over a period of 90 days with two types of microplastics (differing in their chemical structure), high density polyethylene (HDPE) and low density polyethylene (LDPE), which were applied to the soil at a rate of 0% to 0.1% (w/w). The overarching aim was to investigate the effects of microplastic type, microplastic concentration and days of exposure on greenhouse gases emissions. We also used original and artificially weathered microplastics (the same HDPE and LDPE) to make a comparison of greenhouse gases emissions between the original microplastics treated soils and the soils treated with weathered microplastics. Our findings showed that HDPE and LDPE microplastics significantly increased the emissions of greenhouse gases from the soil than that of the control soils. Emissions were increased with the increases in the level of microplastic in the soil. The weathered microplastic emitted greater quantity of greenhouse gases compared to that of the original microplastics. In contrast to a low initial emission quantity, the emissions were gradually increased at the termination of the experiment. Our experiment on the emissions of greenhouse gases from the soil vis-à-vis microplastic additions indicated that the microplastic increased the emissions of greenhouse gases in terrestrial ecosystems, and pervasive microplastic impacts may have consequences for the global climate change. Greenhouse gases emissions from the soil not only depend on the type and concentration of the microplastic, but also on the days of exposure to the microplastic.
文摘Design and Development of a Parabolic Trough Solar Air Heater (PTSAH) for a Greenhouse Dryer (GD) was done to improve the dryer’s performance. The materials used for the fabrication of the PTSAH included galvanized sheets covered with aluminium foil, an absorber tube made of GI pipe painted matt black to increase heat absorbance at the focal line, mild steel square tubes, shutter plywood, and an axial fan to push air through the absorber tube. Key geometrical parameters used for the design of the PTSAH were a rim angle of 98 degrees, focal length of 0.2608 m, height of 0.3451 m, length of 2 m, and an aperture width of 1.2 m. The PTSAH’s total aperture surface area was 2.4 m2, while its absorber tube surface area was 0.1587 m2. The PTSAH was experimentally tested to establish its thermal performance. It was found that the ambient air recorded an average value of 31.1˚C and that the air heater could increase the air temperature by 45.6˚C above ambient with a thermal efficiency of 5.3%. It can, therefore, be concluded that the PTSAH can significantly improve the performance of a GD by supplying the GD with air at a higher temperature than ambient.
基金financially supported by the Steel Structure Research and Education Promotion Project of the Japan Iron and Steel Federation in FY2016.
文摘The present paper first investigates the collapse behavior of a conventional pipe-framed greenhouse under snow loading based on a 3-D finite element analysis,in which both geometrical and material non-linearities are considered.Three snow load distribution patterns related to the wind-driven snow particle movement are used in the analysis.It is found that snow load distribution affects the deformation and collapse behavior of the pipe-framed greenhouse significantly.The results obtained in this study are consistent with the actual damage observed.Next,discussion is made of the effects of reinforcements by adding members to the basic frame on the strength of the whole structure,in which seven kinds of reinforcement methods are examined.A buckling analysis is also carried out.The results indicate that the most effective reinforcement method depends on the snow load distribution pattern.
基金Supported by National Key Technology R&D Program of China(2007BAD88B06)~~
文摘[Objective] This study was to investigate the effects of different irrigation amount on water consumption and water use efficiency of greenhouse cucumber.[Method]Under the condition of drip irrigation with different water amounts in sunlight greenhouse of the arid areas in Ningxia,the soil water was measured and the water consumption of crop was calculated.[Result]When irrigation amount was 563 mm,the water consumption as a whole gradually increased with the delay of growth period,reached peak during the thriving stage of fruit setting,and then gradually declined;in each treatment,the daily water consumption increased with the increasing of irrigation amount during each growth period.However,the consumption of soil moisture reduced with the significant increase of irrigation.563 mm of irrigation amount could meet the water requirements of cucumber and began to add water to soil,and water utilization efficiency could reach 33.4 kg/m3.[Conclusion]The research had provided theoretical basis for water management in the production process of greenhouse cucumber.
基金Supported by National Natural Science Foundation of China(31371562,31301276)Special Fund for Fundamental Scientific Research Business of Central Public Research Institutes(Agriculture)(201103003+2 种基金201203079)Key Projects in the National Science&Technology Pillar Program during the 12thFive-year Plan Period(2012BAD04B08)Fund for Independent Innovation of Agricultural Sciences in Jiangsu Province(CX(14)5021)~~
文摘[Objective] This study aimed to investigate the effect of direct-seeding with non-flooding and wheat residue returning patterns on greenhouse gas emission from rice paddy. [Method] Two rice cultivars currently used in the production, Yangdao 6 (an indica) and Yangjing 4038 (a japonica), were field grown using a direct-seeding method, and four treatments, wheat straw incorporation into soil and traditional flooding (SlF), non-flooding and wheat straw mulching (NSM), non-flooding and wheat straw incorporation into soil (NSl) and traditional flooding (no straw returned, Control, TF), were imposed after sowing to maturity. Effects of direct-seeding with non-flooding and wheat residue returning patterns on CH4, N20 and CO2 emissions were investigated by using the method of static chamber-gas chromatographic tech- niques. [Result] Grain yield showed no significant difference between non-flooding and flooding treatments, but was significantly higher under the SlF than under any other treatments. The emission flux of CH4 and CO2 under TF and SlF exhibited a single peak curve, while changed little under the NSl and NSM The emission flux of N2Oshowed multiple perk curves for all the treatments. Compared with TF, SlF significantly increased mean emission flux of CH4 or N2O, decreased emission of N20, while NSl and NSM significantly decreased the mean emission flux of OH4, and increased emission flux of N2O and CO2. SIF also increased Green Warm Potential (GWP) of CH4, N2O and CO2 and the GWP per unit grain yield by 47.3%- 53.7% and 32.2%-39.4%, respectively. Both NSl and NSM decreased GWP by 24.2%-29.6% and 30.1%-35.5%, and the GWP per unit grain yield was decreased by 21.7-27.2% and 25.6%-31.1%, respectively. [Conelusion] both NSl and NSM could significantly reduce greenhouse effect of CH4, N2O and CO2 meanwhile maintain a high grain yield.
基金Supported by The Project of the Transformation and Popularization of Tianjin Agricultural Technique Achievement (0804170 )Scientific and Technology Achievements Transfer Capital Project (2009GB24160499)
文摘The solar greenhouse's construction and its demand on meteorological service in the process of production management in China were analyzed,and the current situation of meteorological service on it was summarized.Combined with the trend of related technology,the future development of solar greenhouse meteorological service was prospected.
基金Supported by Jiangsu Agricultural Science and Technology Innovation Fund[CX(14)2112]~~
文摘In order to analyze the ventilation and cooling performance of single-tunnel plastic greenhouse in Yangtze-Huai region, the effects of two different ventilation modes (side window, side window+roof window) on the temperature and humidity of plastic greenhouse were studied. The results showed that the ventilation mode of opening side window and roof window could effectively reduce the temperature and humidity at the plant canopy height, which was conducive to the growth of plant in greenhouse.
基金Supported by Special Fund for Agro-scientific Research in the Public Interest(201303089-2)Agricultural Eco-environment Protection Program of Ministry of Agriculture in 2014+1 种基金Key Agricultural Applied Technology Innovation Project of Shandong Province in 2015Shandong Academy of Agricultural Sciences(2014QNM21)~~
文摘To study the effects of superphosphate(SP) on the NH_3 and greenhouse gas emissions,vegetable waste composting was performed for 27 days using 6 different treatments. In addition to the controls,five vegetable waste mixtures(0.77m^3 each) were treated with different amounts of the SP additive, namely, 5%, 10%,15%, 20% and 25%. The ammonia volatilization loss and greenhouse gas emissions were measured during composting.Results indicated that the SP additive significantly decreased the ammonia volatilization and greenhouse gas emissions during vegetable waste composting. The additive reduced the total NH_3 emission by 4.0% to 16.7%. The total greenhouse gas emissions(CO_2-eq) of all treatments with SP additives were decreased by 10.2% to 20.8%, as compared with the controls. The NH_3 emission during vegetable waste composting had the highest contribution to the greenhouse effect caused by the four different gases.The amount of NH_3(CO_2-eq)from each treatment ranged from 59.90 to 81.58 kg/t; NH_3(CO_2-eq) accounted for 69% to 77% of the total emissions from the four gases. Therefore, SP is a cost-effective phosphorus-based fertilizer that can be used as an additive during vegetable waste composting to reduce the NH_3 and greenhouse gas emissions as well as to improve the value of compost as a fertilizer.
基金Supported by Science and Technology Plan Project of Hebei Province(14226301D)National Peach Industrial Technology System(CARS-31-Z-02)+1 种基金Special Financial Fund of Hebei Province(F14R55205)Subject of National Science and Technology Program(2013BAD02B03-1-03-1)~~
文摘Referring to a large number of literatures, the effects of bagging, reflective film and greenhouse film on fruit size of peach were reviewed in this paper so as to provide basis for conducting relevant researches and producing larger fruits. The effects of different types of bags on fruit size of peach were analyzed. The weight variation of single fruit after bagged was investigated, and the relevant reasons were analyzed. In addition, the complexity of effect of greenhouse film on fruit size was also discussed. It is proposed that further comprehensive study on effect of bagging on fruit size should be carried out.
基金Supported by Key Technology Integration and Demonstration of Xinjiang Characteristic Fruit Trees’ High Efficiency and Safe Production,Science and Technical Plan Project of Xinjiang Uygur Autonomous Region(201130102-1)Earmarked Fund for China Agriculture Research System(CARS-30)Financial Aid from Key Fruit Trees Subject of Xinjiang Uygur Autonomous Region~~
文摘[Objective] This study compared the leaf photosynthetic characteristics of Turpan grape cultivated in greenhouses and open field to provide a scientific basis for the high-quality and high-yield cultivation of grape. [Method] Two precocious grape varieties as experimental materials were cultivated in greenhouses and open field, and their net photosynthetic rates (Pn), photo-response curves and CO2 response curves were determined using Li-400XT portable photosynthesis system. [Result] The leaf Pn of the two varieties cultivated in open field was higher than that in greenhouse. The Pn of Hongqitezao cultivated in open field was the highest, up to 19.79 μmol/(m^2·s); in the photo-response curves, Hongqitezao cultivated in greenhouse had the largest Pnmax and apparent quantum yield (AQY), while the Flame Seedless in greenhouse had the smallest light compensation point (LCP). The light saturation point (LSP) value of greenhouse cultivation was higher than that of open field cultivation. In the CO2 response test, the dark respiration rate (Rd) and Pnmax of greenhouse cultivation were higher than those of open field cultivation, and the carboxylation efficiency (CE) of greenhouse cultivation was lower than that of open field cultivation; the CO2 compensation point (CCP) and CO2 saturation point (CSP) of greenhouse cultivation were lower than those of open field cultivation. [Conclusion] The utilization of elevated light in greenhouse cultivation was more efficient than in open field cultivation; however, the utilization of elevated CO2 in greenhouse cultivation was weaker than tin open field cultivation.
基金Supported by the Scientific Research Plan of the Education Department of Jilin Province(2014322)~~
文摘The integration of water and fertilizer is a comprehensive technology combined irrigation and fertilizer, which has outstanding advantages of saving fertilizer, saving water, saving labor, protecting environment, high yield and high efficiency. Currently, most of the water and fertilizer integrated irrigation and fertilization and irrigation operation in the production-based greenhouse is achieved relying on artificial experience, which is hard to achieve timely, scientific and intelligent irrigation. In this study, the application of STM32 embedded system realized the real-time collection of the data from the humidity sensors buried in top, middle and low depth of soil, and water and fertilizer integrated irrigation work was completed in the greenhouse through automatic control according to the predetermined fertilization and irrigation strategies for different crops. Moreover, the system had remote monitoring function, which used the global system for mobile (GSM) module to provide users with remote short message services, and therefore, the users could not only achieve the remote intelligent monitoring on the irrigation, light, ventilation of the greenhouse through short messages, but also could start and stop the remote control system operation, so as to realize the automatic management of the greenhouse environment, achieving the purpose of remote fertilization and water-saving irrigation.
基金Supported by the Science and Technology Support Program of Tianjin(15ZCZDNC00120)~~
文摘ln order to explore the design and construction of cucumber powdery mildew warning system in solar greenhouse, internet of things technology was used to conduct the real-time dynamic monitoring of the incidence of cucumber powdery mildew and cucumber growth environment in solar greenhouse. The growth environ-ment included temperature and humidity of air and soil. Logistic regression model was used to construct cucumber powdery mildew warning model. The results showed that humidity characteristic variable (maximum air humidity) and temperature characteristic variable (maximum air temperature) had significant effects on the inci-dence probability of cucumber powdery mildew in solar greenhouse. And it was fea-sible to construct cucumber powdery mildew warning system in solar greenhouse with internet of things.
文摘By taking the Agricultural Greenhouse Park in Songjiang District,Tianjin City for an example,the construction principles of this park were introduced,such as "ecological","economic","landscaping","satisfying functional demands","popularization of science" and "organic combination of emotions and plants".The park was divided into 4 parts:"New Agricultural Technology","Vegetable Tree","Southland Orchard" and "Vegetable Bar".Landscape layouts,design schemes and plant furnishings in each garden were respectively analyzed.Functions of the greenhouse park such as popularization of science,recreation and entertainment were highlighted as well as its characteristics of "combining artificial landscapes and hi-new agriculture,integrating art and agriculture",so as to provide practical references for the future planning and design of such parks.