The effect of global climate change on vegetation growth is variable.Timely and effective monitoring of vegetation drought is crucial for understanding its dynamics and mitigation,and even regional protection of ecolo...The effect of global climate change on vegetation growth is variable.Timely and effective monitoring of vegetation drought is crucial for understanding its dynamics and mitigation,and even regional protection of ecological environments.In this study,we constructed a new drought index(i.e.,Vegetation Drought Condition Index(VDCI))based on precipitation,potential evapotranspiration,soil moisture and Normalized Difference Vegetation Index(NDVI)data,to monitor vegetation drought in the nine major river basins(including the Songhua River and Liaohe River Basin,Haihe River Basin,Yellow River Basin,Huaihe River Basin,Yangtze River Basin,Southeast River Basin,Pearl River Basin,Southwest River Basin and Continental River Basin)in China at 1-month–12-month(T1–T12)time scales.We used the Pearson's correlation coefficients to assess the relationships between the drought indices(the developed VDCI and traditional drought indices including the Standardized Precipitation Evapotranspiration Index(SPEI),Standardized Soil Moisture Index(SSMI)and Self-calibrating Palmer Drought Severity Index(scPDSI))and the NDVI at T1–T12 time scales,and to estimate and compare the lag times of vegetation response to drought among different drought indices.The results showed that precipitation and potential evapotranspiration have positive and major influences on vegetation in the nine major river basins at T1–T6 time scales.Soil moisture shows a lower degree of negative influence on vegetation in different river basins at multiple time scales.Potential evapotranspiration shows a higher degree of positive influence on vegetation,and it acts as the primary influencing factor with higher area proportion at multiple time scales in different river basins.The VDCI has a stronger relationship with the NDVI in the Songhua River and Liaohe River Basin,Haihe River Basin,Yellow River Basin,Huaihe River Basin and Yangtze River Basin at T1–T4 time scales.In general,the VDCI is more sensitive(with shorter lag time of vegetation response to drought)than the traditional drought indices(SPEI,scPDSI and SSMI)in monitoring vegetation drought,and thus it could be applied to monitor short-term vegetation drought.The VDCI developed in the study can reveal the law of unclear mechanisms between vegetation and climate,and can be applied in other fields of vegetation drought monitoring with complex mechanisms.展开更多
There are five channels in NOAA-N series meteorological satellites. The channel No.1 is exactly located in the absorbtion band of vegetation, the channel No. 2 in the strong re-flection one. Therefore the two channels...There are five channels in NOAA-N series meteorological satellites. The channel No.1 is exactly located in the absorbtion band of vegetation, the channel No. 2 in the strong re-flection one. Therefore the two channels are suitable for monitoring and analysing vegeta-tion. To make certain mathematical value combination of two channels and specify its val-展开更多
The satellite-based vegetation condition index(VCI) and temperature condition index(TCI) have been used extensively for drought detection and tracking, the assessment of weather impacts on vegetation and evaluation of...The satellite-based vegetation condition index(VCI) and temperature condition index(TCI) have been used extensively for drought detection and tracking, the assessment of weather impacts on vegetation and evaluation of the health and productivity of vegetation. In this study, in order to detect and monitor the growth condition of vegetation, we have collected data on vegetation indices and land surface temperature derived from MODIS(2001-2012) and defined a vegetation health index(VHI) based on VCI and TCI for assessing vegetation health condition in the Three Gorges Area, China(TGA). The results of the study show that temporal and spatial characteristics of vegetation health condition can be detected, tracked and mapped by the VHI index. In most parts of the TGA, the vegetation health condition showed an overall increasing trend during the study period, especially in Wulong, Fengdu, Shizhu and other regions located in the midstream sections of the Three Gorges Reservoir. In addition, the four studied vegetation types all showed clear increasing trends during the study period. The increasing trend in the vegetation health condition shows a strong positive correlation with topographical slope and altitude(below 500 m). Over the seasons, this trend is strongest in autumn, followed by spring. However, the correlations between vegetation health condition and climatic factors are more frequently significant in summer and winter than in autumn and spring. The vegetation health condition has been low in 2006 and 2011. This finding is consistent with the extreme weather conditions in those two years. However, only in the summer is vegetation health condition significantly correlated with three climatic factors in most of the study area. This result implies that vegetation growth may show a lagged response to climatic factors and may also be affected by human activities, including agricultural activities, industrial activities and other economic activities.展开更多
The relationship between the groundwater and the surface eco-environment in arid area is very close. In this paper, the authors extracted normalized difference vegetation index (NDVI) and vegetation conditional rat...The relationship between the groundwater and the surface eco-environment in arid area is very close. In this paper, the authors extracted normalized difference vegetation index (NDVI) and vegetation conditional ratio (VCR) from MODIS images, and analyzed the relationships among NDVI, VCR and the measured data of groundwater of the same location in the research region. Based on this, the depth of groundwater suitable for vegetation growth in the upper-middle reaches of the Yellow River basin has been calculated. The results show that the depth of groundwater suitable for vegetation growth in the research region ranges from 0.8 to 4.5m, and the optimal groundwater depth is 1.2m. The method developed in this study is applicable to research the relationship between the groundwater and land surface vegetation environment on large-scale in arid area.展开更多
基金funded by the National Natural Science Foundation of China(52179015,42301024)the Key Technologies Research&Development and Promotion Program of Henan(232102110025)the Cultivation Plan of Innovative Scientific and Technological Team of Water Conservancy Engineering Discipline of North China University of Water Resources and Electric Power(CXTDPY-9).
文摘The effect of global climate change on vegetation growth is variable.Timely and effective monitoring of vegetation drought is crucial for understanding its dynamics and mitigation,and even regional protection of ecological environments.In this study,we constructed a new drought index(i.e.,Vegetation Drought Condition Index(VDCI))based on precipitation,potential evapotranspiration,soil moisture and Normalized Difference Vegetation Index(NDVI)data,to monitor vegetation drought in the nine major river basins(including the Songhua River and Liaohe River Basin,Haihe River Basin,Yellow River Basin,Huaihe River Basin,Yangtze River Basin,Southeast River Basin,Pearl River Basin,Southwest River Basin and Continental River Basin)in China at 1-month–12-month(T1–T12)time scales.We used the Pearson's correlation coefficients to assess the relationships between the drought indices(the developed VDCI and traditional drought indices including the Standardized Precipitation Evapotranspiration Index(SPEI),Standardized Soil Moisture Index(SSMI)and Self-calibrating Palmer Drought Severity Index(scPDSI))and the NDVI at T1–T12 time scales,and to estimate and compare the lag times of vegetation response to drought among different drought indices.The results showed that precipitation and potential evapotranspiration have positive and major influences on vegetation in the nine major river basins at T1–T6 time scales.Soil moisture shows a lower degree of negative influence on vegetation in different river basins at multiple time scales.Potential evapotranspiration shows a higher degree of positive influence on vegetation,and it acts as the primary influencing factor with higher area proportion at multiple time scales in different river basins.The VDCI has a stronger relationship with the NDVI in the Songhua River and Liaohe River Basin,Haihe River Basin,Yellow River Basin,Huaihe River Basin and Yangtze River Basin at T1–T4 time scales.In general,the VDCI is more sensitive(with shorter lag time of vegetation response to drought)than the traditional drought indices(SPEI,scPDSI and SSMI)in monitoring vegetation drought,and thus it could be applied to monitor short-term vegetation drought.The VDCI developed in the study can reveal the law of unclear mechanisms between vegetation and climate,and can be applied in other fields of vegetation drought monitoring with complex mechanisms.
文摘There are five channels in NOAA-N series meteorological satellites. The channel No.1 is exactly located in the absorbtion band of vegetation, the channel No. 2 in the strong re-flection one. Therefore the two channels are suitable for monitoring and analysing vegeta-tion. To make certain mathematical value combination of two channels and specify its val-
基金Natural Science Foundation Project of CQ CSTC(CSTC2011jj A00025)
文摘The satellite-based vegetation condition index(VCI) and temperature condition index(TCI) have been used extensively for drought detection and tracking, the assessment of weather impacts on vegetation and evaluation of the health and productivity of vegetation. In this study, in order to detect and monitor the growth condition of vegetation, we have collected data on vegetation indices and land surface temperature derived from MODIS(2001-2012) and defined a vegetation health index(VHI) based on VCI and TCI for assessing vegetation health condition in the Three Gorges Area, China(TGA). The results of the study show that temporal and spatial characteristics of vegetation health condition can be detected, tracked and mapped by the VHI index. In most parts of the TGA, the vegetation health condition showed an overall increasing trend during the study period, especially in Wulong, Fengdu, Shizhu and other regions located in the midstream sections of the Three Gorges Reservoir. In addition, the four studied vegetation types all showed clear increasing trends during the study period. The increasing trend in the vegetation health condition shows a strong positive correlation with topographical slope and altitude(below 500 m). Over the seasons, this trend is strongest in autumn, followed by spring. However, the correlations between vegetation health condition and climatic factors are more frequently significant in summer and winter than in autumn and spring. The vegetation health condition has been low in 2006 and 2011. This finding is consistent with the extreme weather conditions in those two years. However, only in the summer is vegetation health condition significantly correlated with three climatic factors in most of the study area. This result implies that vegetation growth may show a lagged response to climatic factors and may also be affected by human activities, including agricultural activities, industrial activities and other economic activities.
文摘The relationship between the groundwater and the surface eco-environment in arid area is very close. In this paper, the authors extracted normalized difference vegetation index (NDVI) and vegetation conditional ratio (VCR) from MODIS images, and analyzed the relationships among NDVI, VCR and the measured data of groundwater of the same location in the research region. Based on this, the depth of groundwater suitable for vegetation growth in the upper-middle reaches of the Yellow River basin has been calculated. The results show that the depth of groundwater suitable for vegetation growth in the research region ranges from 0.8 to 4.5m, and the optimal groundwater depth is 1.2m. The method developed in this study is applicable to research the relationship between the groundwater and land surface vegetation environment on large-scale in arid area.