A study was conducted to test the correlation between biomass and elevation and the differences in concentration and storks of nutrients among five vegetation types (Felsenmeer alpine tundra vegetation-FA, Lithic alp...A study was conducted to test the correlation between biomass and elevation and the differences in concentration and storks of nutrients among five vegetation types (Felsenmeer alpine tundra vegetation-FA, Lithic alpine tundra vegetation-LA, Typical alpine tundra vegetation-TA, Meadow alpine tundra vegetation-MA, and Swamp alpine tundra vegetation-SA) on alpine tundra of Changbai Mountains, Jilin Province, China in growing seasons of 2003, 2004 and 2005. The biomass of 43 mono-species and soil nutrients in alpine tundra ecosystem were also investigated. Dominant species from Ericaceae (such as Rhododendron chrysanthum and Vaccinium jliginosum var. alpinum) were taken to analyze organ biomass distribution. Result showed that the biomass and elevation had a significant correlation (Biomass-237.3 in(Elevation) +494.36; R^2=0.8092; P〈0.05). No significant differences were found in phosphorus and sulphur concentrations of roots, stems and leaves among the five vegetation types. There were significant differences in nitrogen and phosphorus stocks of roots, stems and leaves and in sulphur stock of stems and leaves among TA, MA, and SA vegetation types (p〈0.05). The nutrient stock of five vegetations was averagely 72.46 kg.hm^-2, of which N, P, S were 48.55, 10.33 and 13.61 kg·hm^-2, respectively. Soil N and S concentrations in meadow alpine tundra soil type was significantly higher than those in other four soil types (Cold desert alpine tundra soil, Lithic alpine tundra soil, Peat alpine tundra soil, and Gray alpine tundra soil). Phosphorous concentration in SA type was higher (p〈0.05) than in other types. Soil nutrient stock (0-20cm) was averagely 39.59 t.hm^-2, of which N, P, S were 23.74, 5.86, 9.99 t·hm^-2, respectively.展开更多
Alpine grassland of the Tibetan Plateau has undergone severe degradation, even desertification. However, several questions remain to be answered, especially the response mechanisms of vegetation biomass to soil proper...Alpine grassland of the Tibetan Plateau has undergone severe degradation, even desertification. However, several questions remain to be answered, especially the response mechanisms of vegetation biomass to soil properties. In this study, an experiment on degradation gradients was conducted in an alpine meadow at the Zoige Plateau in 2017. Both vegetation characteristics and soil properties were observed during the peak season of plant growth. The classification and regression tree model(CART) and structural equation modelling(SEM) were applied to screen the main factors that govern the vegetation dynamics and explore the interaction of these screened factors. Both aboveground biomass(AGB) and belowground biomass(BGB) experienced a remarkable decrease along the degradation gradients. All soil properties experienced significant variations along the degradation gradients at the 0.05 significance level. Soil physical and chemical properties explained 54.78% of the variation in vegetation biomass along the degradation gradients. AGB was mainly influenced by soil water content(SWC), soil bulk density(SBD), soil organic carbon(SOC), soil total nitrogen(STN), and pH. Soil available nitrogen(SAN), SOC and p H, had significant influence on BGB. Most soil properties had positive effects on AGB and BGB, while SBD and p H had a slightly negative effect on AGB and BGB. The correlations of SWC with AGB and BGB were relatively less significant than those of other soil properties. Our results highlighted that the soil properties played important roles in regulating vegetation dynamics along the degradation gradients and that SWC is not the main factor limiting plant growth in the humid Zoige region. Our results can provide guidance for the restoration and improvement of degraded alpine grasslands on the Tibetan Plateau.展开更多
Mangrove forests are vulnerably threatened by sea level rise(SLR).Vegetation organic carbon(OC)stocks are important for mangrove ecosystem carbon cycle.It is critical to understand how SLR affects vegetation OC stocks...Mangrove forests are vulnerably threatened by sea level rise(SLR).Vegetation organic carbon(OC)stocks are important for mangrove ecosystem carbon cycle.It is critical to understand how SLR affects vegetation OC stocks for evaluating mangrove blue carbon budget and global climate change.In this study,biomass accumulation and OC stocks of mangrove vegetation were compared among three 10 year-old Kandelia obovata(a common species in China)mangrove forests under three intertidal elevations through species-specific allometric equations.This study simulated mangrove forests with SLR values of 0 cm,40 cm and 80 cm,respectively,representing for the current,future~100 a and future~200 a SLR of mangrove forests along the Jiulong River Estuary,China.SLR directly decreased mangrove individual density and inhibited the growth of mangrove vegetation.The total vegetation biomasses were(12.86±0.95)kg/m^2,(7.97±0.90)kg/m^2 and(3.89±0.63)kg/m^2 at Sites SLR 0 cm,SLR40 cm and SLR 80 cm,respectively.The total vegetation OC stock decreased by approximately 3.85 kg/m^2(in terms of C)from Site SLR 0 cm to Site SLR 80 cm.Significantly lower vegetation biomass and OC stock of various components(stem,branch,leaf and root)were found at Site SLR 80 cm.Annual increments of vegetation biomass and OC stock also decreased with SLR increase.Moreover,significant lower sedimentation rate was found at Site SLR 80 cm.These indicated that SLR will decrease mangrove vegetation biomass and OC stock,which may reduce global blue carbon sink by mangroves,exacerbate global warming and give positive feedback to SLR.展开更多
Subject Code:D01With the support by the National Natural Science Foundation of China,a collaborative study by Prof.Wang Xinping(王新平)from the Northwest Institute of Eco-Environment and Resources,Chinese Academy of S...Subject Code:D01With the support by the National Natural Science Foundation of China,a collaborative study by Prof.Wang Xinping(王新平)from the Northwest Institute of Eco-Environment and Resources,Chinese Academy of Sciences and the research group led by Prof.Ignacio Rodriguez-Iturbe from展开更多
In the restoration of degraded wetlands,fertilization can improve the vegetation-soil-microorganisms complex,thereby affecting the organic carbon content.However,it is currently unclear whether these effects are susta...In the restoration of degraded wetlands,fertilization can improve the vegetation-soil-microorganisms complex,thereby affecting the organic carbon content.However,it is currently unclear whether these effects are sustainable.This study employed Biolog-Eco surveys to investigate the changes in vegetation characteristics,soil physicochemical properties,and soil microbial functional diversity in degraded alpine wetlands of the source region of the Yellow River at 3 and 15 months after the application of nitrogen,phosphorus,and organic mixed fertilizer.The following results were obtained:The addition of nitrogen fertilizer and organic compost significantly affects the soil organic carbon content in degraded wetlands.Three months after fertilization,nitrogen addition increases soil organic carbon in both lightly and severely degraded wetlands,whereas after 15 months,organic compost enhanced the soil organic carbon level in severely degraded wetlands.Structural equation modeling indicates that fertilization decreases the soil pH and directly or indirectly influences the soil organic carbon levels through variations in the soil water content and the aboveground biomass of vegetation.Three months after fertilization,nitrogen fertilizer showed a direct positive effect on soil organic carbon.However,organic mixed fertilizer indirectly reduced soil organic carbon by increasing biomass and decreasing soil moisture.After 15 months,none of the fertilizers significantly affected the soil organic carbon level.In summary,it can be inferred that the addition of nitrogen fertilizer lacks sustainability in positively influencing the organic carbon content.展开更多
Forests play a central role in the global carbon cycle.China's forests have a high carbon sequestration potential owing to their wide distribution,young age and relatively low carbon density.Forest biomass is an e...Forests play a central role in the global carbon cycle.China's forests have a high carbon sequestration potential owing to their wide distribution,young age and relatively low carbon density.Forest biomass is an essential variable for assessing carbon sequestration capacity,thus determining the spatio-temporal changes of forest biomass is critical to the national carbon budget and to contribute to sustainable forest management.Based on Chinese forest inventory data(1999–2013),this study explored spatial patterns of forest biomass at a grid resolution of 1 km by applying a downscaling method and further analyzed spatiotemporal changes of biomass at different spatial scales.The main findings are:(1)the regression relationship between forest biomass and the associated infuencing factors at a provincial scale can be applied to estimate biomass at a pixel scale by employing a downscaling method;(2)forest biomass had a distinct spatial pattern with the greatest biomass occurring in the major mountain ranges;(3)forest biomass changes had a notable spatial distribution pattern;increase(i.e.,carbon sinks)occurred in east and southeast China,decreases(i.e.,carbon sources)were observed in the northeast to southwest,with the largest biomass losses in the Hengduan Mountains,Southern Hainan and Northern Da Hinggan Mountains;and,(4)forest vegetation functioned as a carbon sink during 1999–2013 with a net increase in biomass of 3.71 Pg.展开更多
Plant competition has been recognized as one of the most important factors influencing the soructure and function of lake ecosystems. Competition from plants of dissimilar growth form may have profound effects on shal...Plant competition has been recognized as one of the most important factors influencing the soructure and function of lake ecosystems. Competition from plants of dissimilar growth form may have profound effects on shallow lakes'. An experiment was conducted to investigate the effects of competitive interactions of submersed plants with dis- similar growth forms on the biomass allocations. Hydrilla verticitlata and Vallisneria natans were selected and were planted in a single-species monoculture and a mixed-species pattern, Results showed that the growth of E natans was' significantly affected by the tt, verticillata and caused a sharp reduction of biomass, but the root:shoot ratio of E ha- tans was not affected significantly and there was a minimal increase in mixture: while for H. verticillata, the biomass and the root:shoot ratio were not significantly changed by the competitive interactions ore natans, there was minimal increase of biomass and minimal decrease of the root:shoot ratio. These results may indicate that theplant which can develop a dense mat or canopy at the water surface would be a stronger competitor relative to the plant that depends more on light availability near the sediment.展开更多
The purpose of this study was to assess the suppressive effect of Waste Vegetable Biomasses (WVBs) treated by the Steam Explosion technique in a continuous plant, against soil-borne plant pathogens. In order to asse...The purpose of this study was to assess the suppressive effect of Waste Vegetable Biomasses (WVBs) treated by the Steam Explosion technique in a continuous plant, against soil-borne plant pathogens. In order to assess their disease suppression, five WVBs (Miscanthus biomass, durum wheat straw, rice straw, corn stalk and wood shaving) and commercial compost were tested in vivo at three different doses (10, 20 and 30% of potting mix) on seven horticultural pathosystems plant/fungus: tomato/Phytophthora nicotianae, cucumber/Pythium ultimum, lettuce/Fusariurn oxysporum f. sp. lactucae, melordFusariurn oxysporum f. sp. melonis, bearffRhizoctonia solani, eggplant/Verticillium dahlie and fennel/Sclerotinia sclerotiorum. The results showed that the corn stalk was more efficient respect to Miscanthus, compost, wheat straw, rice straw and wood shaving in all the patbosystems and at all the doses tested. The corn stalk suppression ranged from 97% in eggplant/F, dahliae to 35% in lettuce/F, oxysporum f. sp. lactucae, and it was significantly higher with respect to the other substrates. In general, the wheat straw, rice straw and wood shaving were statistically found less efficient as suppressive substrate with respect to corn stalk, Miscanthus and compost at the 30% dose in four pathosystems In particular, the wood shaving suppressiveness ranged from 48% in eggplant/V, dahliae to 12% in lettuce/F, oxysporum f. sp. lactucae. The different suppressiveness observed could be attributed to different concentration of the microbial inhibitory substances (furfurals, organic acids and lignosulfonates) produced during the processing of fresh biomass.展开更多
Many studies showed that permafrost has profound influence on alpine ecosystem. However, former researches were mainly focused on typical points by temporal scales. There were few studies about the correlation between...Many studies showed that permafrost has profound influence on alpine ecosystem. However, former researches were mainly focused on typical points by temporal scales. There were few studies about the correlation between vegetation characteristics and different altitudes covering a large region in spatial pattern, especially in transitional permafrost(TP). There were continuous permafrost(CP) discontinuous permafrost(DCP) and seasonal frozen ground(SFG) in this study region. The types of permafrost changed from SFG to DCP, and finally become CP as the altitudes of Xidatan increase. In this paper, 112 845 points interpreted by HJ1-B(environment and disaster monitoring and prediction small satellite constellation), vegetation investigation points, thawing layer thickness research sites, ground temperature and water content observation plots were used to examine the spatial pattern of vegetation which were located in different altitudes in Xidatan, a typical TP region, in Qinghai-Tibetan Plateau. Vegetation characteristics, soil moisture content(SMC) and thaw depths were collected in 15 August to 25 August2012. Characteristics of vegetation were mainly represented by fractional vegetation cover(FVC) derived from the normalized difference vegetation index(NDVI), as well as above ground biomass(AGB). In this paper, we analyzed that the distinction of vegetation characteristics in each range through statistics data. These ranges were divided by varied altitudes. For examples, the ranges were divided into 50 m or 100 m. In this study we use a large area plots method to further discuss the relationship between the features of vegetation and the different regions of permafrost based on altitudes shifts in Xidatan. A diagram described the vegetation characteristics variability with rising altitudes in transitional permafrost region was drawn in this paper. Our results illustrated the FVCs first increased in SFG region and then decreased in DCP zone slowly, and in CP region FVCs soared then dropped dramatically. With the altitudes increased, the curve of FVCs indicated a parabolic distribution except a little difference in the first 200 m range.展开更多
Greenhouse gas emission of carbon dioxide(CO2) is one of the major factors causing global climate change.Urban green space plays a key role in regulating the global carbon cycle and reducing atmospheric CO2.Quantify...Greenhouse gas emission of carbon dioxide(CO2) is one of the major factors causing global climate change.Urban green space plays a key role in regulating the global carbon cycle and reducing atmospheric CO2.Quantifying the carbon stock,distribution and change of urban green space is vital to understanding the role of urban green space in the urban environment.Remote sensing is a valuable and effective tool for monitoring and estimating aboveground carbon(AGC) stock in large areas.In the present study,different remotely-sensed vegetation indices(VIs) were used to develop a regression equation between VI and AGC stock of urban green space,and the best fit model was then used to estimate the AGC stock of urban green space within the beltways of Xi'an city for the years 2004 and 2010.A map of changes in the spatial distribution patterns of AGC stock was plotted and the possible causes of these changes were analyzed.Results showed that Normalized Difference Vegetation Index(NDVI) correlated moderately well with AGC stock in urban green space.The Difference Vegetation Index(DVI),Ratio Vegetation Index(RVI),Soil Adjusted Vegetation Index(SAVI),Modified Soil Adjusted Vegetation Index(MSAVI) and Renormalized Difference Vegetative Index(RDVI) were lower correlation coefficients than NDVI.The AGC stock in the urban green space of Xi'an in 2004 and 2010 was 73,843 and 126,621 t,respectively,with an average annual growth of 8,796 t and an average annual growth rate of 11.9%.The carbon densities in 2004 and 2010 were 1.62 and 2.77 t/hm2,respectively.Precipitation was not an important factor to influence the changes of AGC stock in the urban green space of Xi'an.Policy orientation,major ecological greening projects such as "transplanting big trees into the city" and the World Horticultural Exposition were found to have an important impact on changes in the spatiotemporal patterns of AGC stock.展开更多
In order to improve environment and relieve poverty, China has launched a series of major ecological engineering programs since the 1980 s. These include the Natural Forest Conservation Program, the Sloping Cropland C...In order to improve environment and relieve poverty, China has launched a series of major ecological engineering programs since the 1980 s. These include the Natural Forest Conservation Program, the Sloping Cropland Conversion Program, the Desertification Combating Program, and the Protection Forest System Construction Program. There is a growing need to quantify the contributions of these programs to regional carbon stocks.However, the lack of widely accepted, robust methods is one of the key obstacles to quantification. The objective of this study was to review existing methods for quantifying regional carbon stocks and then recommend suitable ones for the Chinese ecological engineering programs. We expect that the recommended methods can be applied to elsewhere in the world where there are similar characteristics and objectives.展开更多
Lotus tenuis forage yield has been quantified under defoliation conditions in pastures, grasslands and under dual-purpose production of both livestock forage and seeds. However, little is known about the effects of de...Lotus tenuis forage yield has been quantified under defoliation conditions in pastures, grasslands and under dual-purpose production of both livestock forage and seeds. However, little is known about the effects of defoliation management on L. tenuis flower and pod production and subsequent seed yield. Two field experiments were conducted to study the response of L. tenuis to defoliation at different flowering stages and intensities. In Experiment 1, crops were defoliated at the beginning of the flowering (DBF), mid-flowering (DMF) or full flowering (DFF). In Experiment 2, defoliation was in vegetative stage at low (LDI) or high (HDI) intensities. Defoliation in Experiment 1 neither affected plant cover nor the photosynthetically active radiation intercepted by the crop during pod production. There were less umbels with dehiscent (shattered) pods in the DFF treatment than in Control, DBF and DMF treatments. Flower peak occurred first in the Control, DBF and DMF treatments, and eight days later in DFF plots, however, seed yield was not affected (1324 ± 32.8 kg·ha<sup>-1</sup>). Defoliation intensity did not affect seed yield (962 ± 25.9 kg·ha<sup>-</sup><sup>1</sup>) because of self-compensation which increased harvest index in HDI (14.5% ± 0.6%) compared to the Control and LDI (12.0% ± 0.3%) treatments. Plant survival was not affected by defoliation treatments in any of the experiments. Flowering can be synchronized through defoliation. The blooming of large numbers of flowers in a short time was achieved, reducing the number of shattered pods. Compensatory responses through plant plasticity conferred L. tenuis the ability to overcome defoliation without affecting seed yield. Lotus tenuis defoliation as management tool will be considered in future researches because it is possible to harvest forage and to increase seed yield through a reduction of shattered pods.展开更多
Hypothesis:Variation in species assemblages due to micro-topographic features and flow regime determine vegetation carbon stock in floodplain wetlands.Material and method:We tested this hypothesis in Chatla—a tropica...Hypothesis:Variation in species assemblages due to micro-topographic features and flow regime determine vegetation carbon stock in floodplain wetlands.Material and method:We tested this hypothesis in Chatla—a tropical floodplain wetland located in northeast India.Five sampling stations characterized by contrasting micro-topographic and flow parameters were selected in the wetland for study.Species composition,assemblage pattern,and vegetation carbon stock were studied in these stations during three flood phases,i.e.,early,middle,and late flood phases following standard methods.Univariate and multivariate statistics were used to determine the relationship between the selected environmental parameters,plant species assemblages,and vegetation carbon stock of the wetland.Results:Thirty-one species of herbs and five species of shrubs were recorded from the five stations in Chatla floodplain wetland.Flow regime characterized by water flow velocity and discharge showed substantial variations across the stations.These parameters in turn are related to variations in the micro-topographic characteristics namely depth,width,and cross-sectional area of the stations.Plant species composition and abundance differed significantly with respect to micro-topography and flow regime as revealed by the cluster diagram.The canonical correspondence analysis revealed strong association of plant species assemblages with the micro-topography and flow regime within the wetland.Multiple regression analysis revealed a significant positive relationship of the vegetation carbon stock with the water discharge.Conclusions:Spatial variation in plant species diversity because of micro-topography and flow regime determines the vegetation carbon stock in floodplain wetlands.Modification of these parameters by anthropogenic activities such as mining and quarrying may potentially influence the carbon stocking potential of seasonal floodplain wetlands.Therefore,appropriate measures should be taken to maintain the integrity of the natural topographic features of such wetlands.展开更多
Carbon emissions from land use(ELUC)are an important part of anthropogenic CO_(2) emissions,but its size and location remain uncertain,and our knowledge of the relationship between ELUC and GDP remains partial.We show...Carbon emissions from land use(ELUC)are an important part of anthropogenic CO_(2) emissions,but its size and location remain uncertain,and our knowledge of the relationship between ELUC and GDP remains partial.We showed that the carbon emissions directly caused by land use change(direct ELUC)during 1992-2015 was 26.54 Pg C(1.15 Pg C yr^(-1)),with a decreased trend and a net reduction rate of0.15 Pg C yr^(-1).The areas that exhibited reductions were concentrated in South America,Central Africa,and Southeast Asia,and those with increments were scattered in Northwestern North America,Eastern South America,Central Africa,East Asia,and parts of Southeast Asia.For the indirect carbon emissions from the utilization of built-up land(indirect ELUC),it manifested an upward trend with a total emission of 27.51 Pg C(1.2 Pg C yr^(-1)).The total value resulted by global ELUC was $136.3×10^(9) US,and the value of annual was equivalent to 3.7 times the GDP of the Central African Republic in 2015($5.93×10^(9) US yr^(-1)).Among the 79 countries and regions considered in this study,54 represented the upward GDP with increased emissions,and only 25 experienced GDP growth with emission reductions.These findings highlight the pivotal role of land use change in the carbon cycle and the significance of coordinated development between GDP and carbon emissions.展开更多
To produce β-glucosidase by consecutive batch fermentation, a marine Aspergillus niger was immobilized on a natural carrier, towel gourd vegetable sponges. The immobilized mycelia were 0.15 g/g carrier with the immob...To produce β-glucosidase by consecutive batch fermentation, a marine Aspergillus niger was immobilized on a natural carrier, towel gourd vegetable sponges. The immobilized mycelia were 0.15 g/g carrier with the immobilized biomass percentage of over 95%. The immobilized mycelia possessed the long durability(22.5 days). The maximum production occurred 1.5 day earlier by the immobilized mycelia than by the free mycelia. β-Glucosidase production of five consecutive batches was over 110 U/m L. At high salinity,the activity and stability of β-glucosidase from the marine A. niger increased remarkable. Immobilizing the marine A. niger on the novel natural carrier achieved the efficient production of β-glucosidase.展开更多
基金This research was supported by National Natural Science Foundation of China (No: 40473054)Agricultural Technological Production Translation of Science and Technology of Ministry (No:05EFN216600446).
文摘A study was conducted to test the correlation between biomass and elevation and the differences in concentration and storks of nutrients among five vegetation types (Felsenmeer alpine tundra vegetation-FA, Lithic alpine tundra vegetation-LA, Typical alpine tundra vegetation-TA, Meadow alpine tundra vegetation-MA, and Swamp alpine tundra vegetation-SA) on alpine tundra of Changbai Mountains, Jilin Province, China in growing seasons of 2003, 2004 and 2005. The biomass of 43 mono-species and soil nutrients in alpine tundra ecosystem were also investigated. Dominant species from Ericaceae (such as Rhododendron chrysanthum and Vaccinium jliginosum var. alpinum) were taken to analyze organ biomass distribution. Result showed that the biomass and elevation had a significant correlation (Biomass-237.3 in(Elevation) +494.36; R^2=0.8092; P〈0.05). No significant differences were found in phosphorus and sulphur concentrations of roots, stems and leaves among the five vegetation types. There were significant differences in nitrogen and phosphorus stocks of roots, stems and leaves and in sulphur stock of stems and leaves among TA, MA, and SA vegetation types (p〈0.05). The nutrient stock of five vegetations was averagely 72.46 kg.hm^-2, of which N, P, S were 48.55, 10.33 and 13.61 kg·hm^-2, respectively. Soil N and S concentrations in meadow alpine tundra soil type was significantly higher than those in other four soil types (Cold desert alpine tundra soil, Lithic alpine tundra soil, Peat alpine tundra soil, and Gray alpine tundra soil). Phosphorous concentration in SA type was higher (p〈0.05) than in other types. Soil nutrient stock (0-20cm) was averagely 39.59 t.hm^-2, of which N, P, S were 23.74, 5.86, 9.99 t·hm^-2, respectively.
基金Under the auspices of the China Postdoctoral Science Foundation(No.2017M620889)the Second Tibetan Plateau Scientific Expedition and Research Program(No.2019QZKK0405-05)the State Key Research Development Program of China(No.2016YFC0501803,2016YFC0501802)。
文摘Alpine grassland of the Tibetan Plateau has undergone severe degradation, even desertification. However, several questions remain to be answered, especially the response mechanisms of vegetation biomass to soil properties. In this study, an experiment on degradation gradients was conducted in an alpine meadow at the Zoige Plateau in 2017. Both vegetation characteristics and soil properties were observed during the peak season of plant growth. The classification and regression tree model(CART) and structural equation modelling(SEM) were applied to screen the main factors that govern the vegetation dynamics and explore the interaction of these screened factors. Both aboveground biomass(AGB) and belowground biomass(BGB) experienced a remarkable decrease along the degradation gradients. All soil properties experienced significant variations along the degradation gradients at the 0.05 significance level. Soil physical and chemical properties explained 54.78% of the variation in vegetation biomass along the degradation gradients. AGB was mainly influenced by soil water content(SWC), soil bulk density(SBD), soil organic carbon(SOC), soil total nitrogen(STN), and pH. Soil available nitrogen(SAN), SOC and p H, had significant influence on BGB. Most soil properties had positive effects on AGB and BGB, while SBD and p H had a slightly negative effect on AGB and BGB. The correlations of SWC with AGB and BGB were relatively less significant than those of other soil properties. Our results highlighted that the soil properties played important roles in regulating vegetation dynamics along the degradation gradients and that SWC is not the main factor limiting plant growth in the humid Zoige region. Our results can provide guidance for the restoration and improvement of degraded alpine grasslands on the Tibetan Plateau.
基金The National Natural Science Foundation of China under contract Nos 41776097 and 42076142the Scientific Research Foundation of Third Institute of Oceanography,Ministry of Natural Resources under contract No.2019017the Fujian Provincial Key Laboratory of Marine Ecological Conservation and Restoration under contract No.EPR2020003。
文摘Mangrove forests are vulnerably threatened by sea level rise(SLR).Vegetation organic carbon(OC)stocks are important for mangrove ecosystem carbon cycle.It is critical to understand how SLR affects vegetation OC stocks for evaluating mangrove blue carbon budget and global climate change.In this study,biomass accumulation and OC stocks of mangrove vegetation were compared among three 10 year-old Kandelia obovata(a common species in China)mangrove forests under three intertidal elevations through species-specific allometric equations.This study simulated mangrove forests with SLR values of 0 cm,40 cm and 80 cm,respectively,representing for the current,future~100 a and future~200 a SLR of mangrove forests along the Jiulong River Estuary,China.SLR directly decreased mangrove individual density and inhibited the growth of mangrove vegetation.The total vegetation biomasses were(12.86±0.95)kg/m^2,(7.97±0.90)kg/m^2 and(3.89±0.63)kg/m^2 at Sites SLR 0 cm,SLR40 cm and SLR 80 cm,respectively.The total vegetation OC stock decreased by approximately 3.85 kg/m^2(in terms of C)from Site SLR 0 cm to Site SLR 80 cm.Significantly lower vegetation biomass and OC stock of various components(stem,branch,leaf and root)were found at Site SLR 80 cm.Annual increments of vegetation biomass and OC stock also decreased with SLR increase.Moreover,significant lower sedimentation rate was found at Site SLR 80 cm.These indicated that SLR will decrease mangrove vegetation biomass and OC stock,which may reduce global blue carbon sink by mangroves,exacerbate global warming and give positive feedback to SLR.
文摘Subject Code:D01With the support by the National Natural Science Foundation of China,a collaborative study by Prof.Wang Xinping(王新平)from the Northwest Institute of Eco-Environment and Resources,Chinese Academy of Sciences and the research group led by Prof.Ignacio Rodriguez-Iturbe from
基金supported by the National Nature Science Foundations of China(32160269)the International Science and Technology Cooperation Project of Qinghai province of China(2022-HZ-817).
文摘In the restoration of degraded wetlands,fertilization can improve the vegetation-soil-microorganisms complex,thereby affecting the organic carbon content.However,it is currently unclear whether these effects are sustainable.This study employed Biolog-Eco surveys to investigate the changes in vegetation characteristics,soil physicochemical properties,and soil microbial functional diversity in degraded alpine wetlands of the source region of the Yellow River at 3 and 15 months after the application of nitrogen,phosphorus,and organic mixed fertilizer.The following results were obtained:The addition of nitrogen fertilizer and organic compost significantly affects the soil organic carbon content in degraded wetlands.Three months after fertilization,nitrogen addition increases soil organic carbon in both lightly and severely degraded wetlands,whereas after 15 months,organic compost enhanced the soil organic carbon level in severely degraded wetlands.Structural equation modeling indicates that fertilization decreases the soil pH and directly or indirectly influences the soil organic carbon levels through variations in the soil water content and the aboveground biomass of vegetation.Three months after fertilization,nitrogen fertilizer showed a direct positive effect on soil organic carbon.However,organic mixed fertilizer indirectly reduced soil organic carbon by increasing biomass and decreasing soil moisture.After 15 months,none of the fertilizers significantly affected the soil organic carbon level.In summary,it can be inferred that the addition of nitrogen fertilizer lacks sustainability in positively influencing the organic carbon content.
基金supported by the National Key Research and Development Program of China(2019YFA0606603)the National Natural Science Foundation of China(No.41971234)the Project of Graduate Student Innovative and Practical Research in Jiangsu Province(KYCX20-0028)。
文摘Forests play a central role in the global carbon cycle.China's forests have a high carbon sequestration potential owing to their wide distribution,young age and relatively low carbon density.Forest biomass is an essential variable for assessing carbon sequestration capacity,thus determining the spatio-temporal changes of forest biomass is critical to the national carbon budget and to contribute to sustainable forest management.Based on Chinese forest inventory data(1999–2013),this study explored spatial patterns of forest biomass at a grid resolution of 1 km by applying a downscaling method and further analyzed spatiotemporal changes of biomass at different spatial scales.The main findings are:(1)the regression relationship between forest biomass and the associated infuencing factors at a provincial scale can be applied to estimate biomass at a pixel scale by employing a downscaling method;(2)forest biomass had a distinct spatial pattern with the greatest biomass occurring in the major mountain ranges;(3)forest biomass changes had a notable spatial distribution pattern;increase(i.e.,carbon sinks)occurred in east and southeast China,decreases(i.e.,carbon sources)were observed in the northeast to southwest,with the largest biomass losses in the Hengduan Mountains,Southern Hainan and Northern Da Hinggan Mountains;and,(4)forest vegetation functioned as a carbon sink during 1999–2013 with a net increase in biomass of 3.71 Pg.
基金sponsored by China Postdoctoral Science Foundation (Grant No.20090461149)the Postdoctoral Science Foundation of Jiangsu Province (Grant No. 0802029C)the Youth Science Foundation of JINAN Univeristy (Grant No. 51208026)
文摘Plant competition has been recognized as one of the most important factors influencing the soructure and function of lake ecosystems. Competition from plants of dissimilar growth form may have profound effects on shallow lakes'. An experiment was conducted to investigate the effects of competitive interactions of submersed plants with dis- similar growth forms on the biomass allocations. Hydrilla verticitlata and Vallisneria natans were selected and were planted in a single-species monoculture and a mixed-species pattern, Results showed that the growth of E natans was' significantly affected by the tt, verticillata and caused a sharp reduction of biomass, but the root:shoot ratio of E ha- tans was not affected significantly and there was a minimal increase in mixture: while for H. verticillata, the biomass and the root:shoot ratio were not significantly changed by the competitive interactions ore natans, there was minimal increase of biomass and minimal decrease of the root:shoot ratio. These results may indicate that theplant which can develop a dense mat or canopy at the water surface would be a stronger competitor relative to the plant that depends more on light availability near the sediment.
文摘The purpose of this study was to assess the suppressive effect of Waste Vegetable Biomasses (WVBs) treated by the Steam Explosion technique in a continuous plant, against soil-borne plant pathogens. In order to assess their disease suppression, five WVBs (Miscanthus biomass, durum wheat straw, rice straw, corn stalk and wood shaving) and commercial compost were tested in vivo at three different doses (10, 20 and 30% of potting mix) on seven horticultural pathosystems plant/fungus: tomato/Phytophthora nicotianae, cucumber/Pythium ultimum, lettuce/Fusariurn oxysporum f. sp. lactucae, melordFusariurn oxysporum f. sp. melonis, bearffRhizoctonia solani, eggplant/Verticillium dahlie and fennel/Sclerotinia sclerotiorum. The results showed that the corn stalk was more efficient respect to Miscanthus, compost, wheat straw, rice straw and wood shaving in all the patbosystems and at all the doses tested. The corn stalk suppression ranged from 97% in eggplant/F, dahliae to 35% in lettuce/F, oxysporum f. sp. lactucae, and it was significantly higher with respect to the other substrates. In general, the wheat straw, rice straw and wood shaving were statistically found less efficient as suppressive substrate with respect to corn stalk, Miscanthus and compost at the 30% dose in four pathosystems In particular, the wood shaving suppressiveness ranged from 48% in eggplant/V, dahliae to 12% in lettuce/F, oxysporum f. sp. lactucae. The different suppressiveness observed could be attributed to different concentration of the microbial inhibitory substances (furfurals, organic acids and lignosulfonates) produced during the processing of fresh biomass.
基金Supported by National Natural Science Foundation of China(31260572)Special Fund for Science and Technology System Reform of Guizhou Province(Qian Ke He Z Zi[2012]4005)Guizhou Provincial Science and Technology Foundation(Qian Ke He J Zi[2013]2152)
文摘Many studies showed that permafrost has profound influence on alpine ecosystem. However, former researches were mainly focused on typical points by temporal scales. There were few studies about the correlation between vegetation characteristics and different altitudes covering a large region in spatial pattern, especially in transitional permafrost(TP). There were continuous permafrost(CP) discontinuous permafrost(DCP) and seasonal frozen ground(SFG) in this study region. The types of permafrost changed from SFG to DCP, and finally become CP as the altitudes of Xidatan increase. In this paper, 112 845 points interpreted by HJ1-B(environment and disaster monitoring and prediction small satellite constellation), vegetation investigation points, thawing layer thickness research sites, ground temperature and water content observation plots were used to examine the spatial pattern of vegetation which were located in different altitudes in Xidatan, a typical TP region, in Qinghai-Tibetan Plateau. Vegetation characteristics, soil moisture content(SMC) and thaw depths were collected in 15 August to 25 August2012. Characteristics of vegetation were mainly represented by fractional vegetation cover(FVC) derived from the normalized difference vegetation index(NDVI), as well as above ground biomass(AGB). In this paper, we analyzed that the distinction of vegetation characteristics in each range through statistics data. These ranges were divided by varied altitudes. For examples, the ranges were divided into 50 m or 100 m. In this study we use a large area plots method to further discuss the relationship between the features of vegetation and the different regions of permafrost based on altitudes shifts in Xidatan. A diagram described the vegetation characteristics variability with rising altitudes in transitional permafrost region was drawn in this paper. Our results illustrated the FVCs first increased in SFG region and then decreased in DCP zone slowly, and in CP region FVCs soared then dropped dramatically. With the altitudes increased, the curve of FVCs indicated a parabolic distribution except a little difference in the first 200 m range.
基金supported by the Forestry Research Foundation for the Public Service Industry of China (200904004)
文摘Greenhouse gas emission of carbon dioxide(CO2) is one of the major factors causing global climate change.Urban green space plays a key role in regulating the global carbon cycle and reducing atmospheric CO2.Quantifying the carbon stock,distribution and change of urban green space is vital to understanding the role of urban green space in the urban environment.Remote sensing is a valuable and effective tool for monitoring and estimating aboveground carbon(AGC) stock in large areas.In the present study,different remotely-sensed vegetation indices(VIs) were used to develop a regression equation between VI and AGC stock of urban green space,and the best fit model was then used to estimate the AGC stock of urban green space within the beltways of Xi'an city for the years 2004 and 2010.A map of changes in the spatial distribution patterns of AGC stock was plotted and the possible causes of these changes were analyzed.Results showed that Normalized Difference Vegetation Index(NDVI) correlated moderately well with AGC stock in urban green space.The Difference Vegetation Index(DVI),Ratio Vegetation Index(RVI),Soil Adjusted Vegetation Index(SAVI),Modified Soil Adjusted Vegetation Index(MSAVI) and Renormalized Difference Vegetative Index(RDVI) were lower correlation coefficients than NDVI.The AGC stock in the urban green space of Xi'an in 2004 and 2010 was 73,843 and 126,621 t,respectively,with an average annual growth of 8,796 t and an average annual growth rate of 11.9%.The carbon densities in 2004 and 2010 were 1.62 and 2.77 t/hm2,respectively.Precipitation was not an important factor to influence the changes of AGC stock in the urban green space of Xi'an.Policy orientation,major ecological greening projects such as "transplanting big trees into the city" and the World Horticultural Exposition were found to have an important impact on changes in the spatiotemporal patterns of AGC stock.
基金supported by grants from Strategic Priority Research Program of Chinese Academy of Sciences(No.XDA05060101)Graduate Innovation Project Funding of Jiangxi Province(No.YC2013-S117)+1 种基金Jiangxi Provincial Science and Technology International Cooperation Project(No.09003614)GanPo 555 Talent Project Funding of Jiangxi Province
文摘In order to improve environment and relieve poverty, China has launched a series of major ecological engineering programs since the 1980 s. These include the Natural Forest Conservation Program, the Sloping Cropland Conversion Program, the Desertification Combating Program, and the Protection Forest System Construction Program. There is a growing need to quantify the contributions of these programs to regional carbon stocks.However, the lack of widely accepted, robust methods is one of the key obstacles to quantification. The objective of this study was to review existing methods for quantifying regional carbon stocks and then recommend suitable ones for the Chinese ecological engineering programs. We expect that the recommended methods can be applied to elsewhere in the world where there are similar characteristics and objectives.
文摘Lotus tenuis forage yield has been quantified under defoliation conditions in pastures, grasslands and under dual-purpose production of both livestock forage and seeds. However, little is known about the effects of defoliation management on L. tenuis flower and pod production and subsequent seed yield. Two field experiments were conducted to study the response of L. tenuis to defoliation at different flowering stages and intensities. In Experiment 1, crops were defoliated at the beginning of the flowering (DBF), mid-flowering (DMF) or full flowering (DFF). In Experiment 2, defoliation was in vegetative stage at low (LDI) or high (HDI) intensities. Defoliation in Experiment 1 neither affected plant cover nor the photosynthetically active radiation intercepted by the crop during pod production. There were less umbels with dehiscent (shattered) pods in the DFF treatment than in Control, DBF and DMF treatments. Flower peak occurred first in the Control, DBF and DMF treatments, and eight days later in DFF plots, however, seed yield was not affected (1324 ± 32.8 kg·ha<sup>-1</sup>). Defoliation intensity did not affect seed yield (962 ± 25.9 kg·ha<sup>-</sup><sup>1</sup>) because of self-compensation which increased harvest index in HDI (14.5% ± 0.6%) compared to the Control and LDI (12.0% ± 0.3%) treatments. Plant survival was not affected by defoliation treatments in any of the experiments. Flowering can be synchronized through defoliation. The blooming of large numbers of flowers in a short time was achieved, reducing the number of shattered pods. Compensatory responses through plant plasticity conferred L. tenuis the ability to overcome defoliation without affecting seed yield. Lotus tenuis defoliation as management tool will be considered in future researches because it is possible to harvest forage and to increase seed yield through a reduction of shattered pods.
文摘Hypothesis:Variation in species assemblages due to micro-topographic features and flow regime determine vegetation carbon stock in floodplain wetlands.Material and method:We tested this hypothesis in Chatla—a tropical floodplain wetland located in northeast India.Five sampling stations characterized by contrasting micro-topographic and flow parameters were selected in the wetland for study.Species composition,assemblage pattern,and vegetation carbon stock were studied in these stations during three flood phases,i.e.,early,middle,and late flood phases following standard methods.Univariate and multivariate statistics were used to determine the relationship between the selected environmental parameters,plant species assemblages,and vegetation carbon stock of the wetland.Results:Thirty-one species of herbs and five species of shrubs were recorded from the five stations in Chatla floodplain wetland.Flow regime characterized by water flow velocity and discharge showed substantial variations across the stations.These parameters in turn are related to variations in the micro-topographic characteristics namely depth,width,and cross-sectional area of the stations.Plant species composition and abundance differed significantly with respect to micro-topography and flow regime as revealed by the cluster diagram.The canonical correspondence analysis revealed strong association of plant species assemblages with the micro-topography and flow regime within the wetland.Multiple regression analysis revealed a significant positive relationship of the vegetation carbon stock with the water discharge.Conclusions:Spatial variation in plant species diversity because of micro-topography and flow regime determines the vegetation carbon stock in floodplain wetlands.Modification of these parameters by anthropogenic activities such as mining and quarrying may potentially influence the carbon stocking potential of seasonal floodplain wetlands.Therefore,appropriate measures should be taken to maintain the integrity of the natural topographic features of such wetlands.
基金supported jointly by national key research program of China(No.2016YFC0502102&2016YFC0502300)“Western light”talent training plan(Class A)(No.2018-99)+5 种基金Chinese academy of science and technology services network program(No.KFJ-STS-ZDTP-036)international cooperation agency international partnership program(No.132852KYSB20170029,No.2014e3)Guizhou high-level innovative talent training program“ten”level talents program(No.2016-5648)United fund of karst science research center(No.U1612441)International cooperation research projects of the national natural science fund committee(No.41571130074&41571130042)Science and Technology Plan of Guizhou Province of China(No.2017-2966).
文摘Carbon emissions from land use(ELUC)are an important part of anthropogenic CO_(2) emissions,but its size and location remain uncertain,and our knowledge of the relationship between ELUC and GDP remains partial.We showed that the carbon emissions directly caused by land use change(direct ELUC)during 1992-2015 was 26.54 Pg C(1.15 Pg C yr^(-1)),with a decreased trend and a net reduction rate of0.15 Pg C yr^(-1).The areas that exhibited reductions were concentrated in South America,Central Africa,and Southeast Asia,and those with increments were scattered in Northwestern North America,Eastern South America,Central Africa,East Asia,and parts of Southeast Asia.For the indirect carbon emissions from the utilization of built-up land(indirect ELUC),it manifested an upward trend with a total emission of 27.51 Pg C(1.2 Pg C yr^(-1)).The total value resulted by global ELUC was $136.3×10^(9) US,and the value of annual was equivalent to 3.7 times the GDP of the Central African Republic in 2015($5.93×10^(9) US yr^(-1)).Among the 79 countries and regions considered in this study,54 represented the upward GDP with increased emissions,and only 25 experienced GDP growth with emission reductions.These findings highlight the pivotal role of land use change in the carbon cycle and the significance of coordinated development between GDP and carbon emissions.
文摘To produce β-glucosidase by consecutive batch fermentation, a marine Aspergillus niger was immobilized on a natural carrier, towel gourd vegetable sponges. The immobilized mycelia were 0.15 g/g carrier with the immobilized biomass percentage of over 95%. The immobilized mycelia possessed the long durability(22.5 days). The maximum production occurred 1.5 day earlier by the immobilized mycelia than by the free mycelia. β-Glucosidase production of five consecutive batches was over 110 U/m L. At high salinity,the activity and stability of β-glucosidase from the marine A. niger increased remarkable. Immobilizing the marine A. niger on the novel natural carrier achieved the efficient production of β-glucosidase.