Ecosystem responses to climate change,particularly in arid environments,is an understudied topic.This study conducted a spatial analysis of ecosystem responses to short-term variability in temperature,precipitation,an...Ecosystem responses to climate change,particularly in arid environments,is an understudied topic.This study conducted a spatial analysis of ecosystem responses to short-term variability in temperature,precipitation,and solar radiation in the Qilian Mountains National Park,an arid mountainous region in Northwest China.We collected precipitation and temperature data from the National Science and Technology Infrastructure Platform,solar radiation data from the China Meteorological Forcing Dataset,and vegetation cover remote-sensing data from the Moderate Resolution Imaging Spectroradiometer.We used the vegetation sensitivity index to identify areas sensitive to climate change and to determine which climatic factors were significant in this regard.The findings revealed a high degree of heterogeneity and non-linearity of ecosystem responses to climate change.Four types of heterogeneity were identified:longitude,altitude,ecosystem,and climate disturbance.Furthermore,the characteristics of nonlinear ecosystem responses to climate change included:(1)inconsistency in the controlling climatic factors for the same ecosystems in different geographical settings;(2)the interaction between different climatic factors results in varying weights that affect ecosystem stability and makes them difficult to determine;and(3)the hysteresis effect of vegetation increases the uncertainty of ecosystem responses to climate change.The findings are significant because they highlight the complexity of ecosystem responses to climate change.Furthermore,the identification of areas that are particularly sensitive to climate change and the influencing factors has important implications for predicting and managing the impacts of climate change on ecosystems,which can help protect the stability of ecosystems in the Qilian Mountains National Park.展开更多
Droughts have dramatic direct and indirect impacts on vegetation and terrestrial ecosystem stability, including decreases in growth and subsequent decreases in CO_2 absorption. Although much research has been carried ...Droughts have dramatic direct and indirect impacts on vegetation and terrestrial ecosystem stability, including decreases in growth and subsequent decreases in CO_2 absorption. Although much research has been carried out on the response of vegetation to droughts, it remains unclear whether biomes are becoming more resistant or more vulnerable to drought. In this study, we used the Standardized Precipitation Evapotranspiration Index(SPEI, a multiscalar drought index) and the Normalized Difference Vegetation Index(NDVI, an indicator of vegetation growth) to detect the sensitivity of vegetation growth to droughts across 12–24 month timescales and to detect the change in this sensitivity over recent decades. We found that vegetation growth was most sensitive to 17–18 month droughts in water-limited regions, implying pronounce legacy effects from water conditions in previous years. In addition, we detected reduced coupling between drought and vegetation growth, probably caused by release moisture stress in water limited areas. Meanwhile, we observed a shortening of drought timescale to which vegetation most sensitively responded from an average of 18.1 to 17.2 months, suggesting the weakening of the drought legacy effect on vegetation growth. Results of this study contribute to the overall understanding of the resistance and resilience of ecosystems to drought conditions.展开更多
基金supported by the National Key Research and Development Program of China (2019YFC0507402)
文摘Ecosystem responses to climate change,particularly in arid environments,is an understudied topic.This study conducted a spatial analysis of ecosystem responses to short-term variability in temperature,precipitation,and solar radiation in the Qilian Mountains National Park,an arid mountainous region in Northwest China.We collected precipitation and temperature data from the National Science and Technology Infrastructure Platform,solar radiation data from the China Meteorological Forcing Dataset,and vegetation cover remote-sensing data from the Moderate Resolution Imaging Spectroradiometer.We used the vegetation sensitivity index to identify areas sensitive to climate change and to determine which climatic factors were significant in this regard.The findings revealed a high degree of heterogeneity and non-linearity of ecosystem responses to climate change.Four types of heterogeneity were identified:longitude,altitude,ecosystem,and climate disturbance.Furthermore,the characteristics of nonlinear ecosystem responses to climate change included:(1)inconsistency in the controlling climatic factors for the same ecosystems in different geographical settings;(2)the interaction between different climatic factors results in varying weights that affect ecosystem stability and makes them difficult to determine;and(3)the hysteresis effect of vegetation increases the uncertainty of ecosystem responses to climate change.The findings are significant because they highlight the complexity of ecosystem responses to climate change.Furthermore,the identification of areas that are particularly sensitive to climate change and the influencing factors has important implications for predicting and managing the impacts of climate change on ecosystems,which can help protect the stability of ecosystems in the Qilian Mountains National Park.
基金supported by the National Natural Science Foundation of China (Grant No. 41671083)the National Key R&D Program of China (Grant Nos. 2017YFA0603601 & 2015CB953600)the Fundamental Research Funds for the Central Universities (Grant No. 312231103)
文摘Droughts have dramatic direct and indirect impacts on vegetation and terrestrial ecosystem stability, including decreases in growth and subsequent decreases in CO_2 absorption. Although much research has been carried out on the response of vegetation to droughts, it remains unclear whether biomes are becoming more resistant or more vulnerable to drought. In this study, we used the Standardized Precipitation Evapotranspiration Index(SPEI, a multiscalar drought index) and the Normalized Difference Vegetation Index(NDVI, an indicator of vegetation growth) to detect the sensitivity of vegetation growth to droughts across 12–24 month timescales and to detect the change in this sensitivity over recent decades. We found that vegetation growth was most sensitive to 17–18 month droughts in water-limited regions, implying pronounce legacy effects from water conditions in previous years. In addition, we detected reduced coupling between drought and vegetation growth, probably caused by release moisture stress in water limited areas. Meanwhile, we observed a shortening of drought timescale to which vegetation most sensitively responded from an average of 18.1 to 17.2 months, suggesting the weakening of the drought legacy effect on vegetation growth. Results of this study contribute to the overall understanding of the resistance and resilience of ecosystems to drought conditions.