Field spectrum pretreatment experiments were carried out, and denoising numerical experiment via lifting wavelet transform (LWT) was designed, and several famous test signals including blocks, bumps, heavy sine and ...Field spectrum pretreatment experiments were carried out, and denoising numerical experiment via lifting wavelet transform (LWT) was designed, and several famous test signals including blocks, bumps, heavy sine and doppler were processed via Lw'r in these experiment. And the field spectrum was processed via Lw'r. Experiments proved that SNRG-tO-SNRN curves have similar feature and they all have a peak. And SNRG of almost all employed wavelets have higher value with SNRN between 0 and 20 dB. When signal is at high SNR, the SNRG is very little, and the MSED of denoised signal became little by little. LWT is more suite to denoise the low SNR or heavy noise contaminated signals. Bior4.4 have wider SNRN interval for denoising comparing with other five wavelets, includ- ing haar, db6, sym6, bior2.2 and bior3.3. Original field spectrum is processed by 3 stage liftings based on bior4.4 to denoise the trivial noise-contaminated regions. On processing the water band signal, logarithm transform is firstly taken. And then the spectrum is denoised via LWT based on bior4.4. The results show that an excellent denoised spectrum can be get, especially between 350 nm and 1 800 nm, and between 1 960 nm to 2 500 nm. While there is still a bump around 1 900 nm, this maybe due to the spectrum machine's limited precision.展开更多
Recent studies have demonstrated the application of vegetation indices from canopy reflectedspectrum for inversion of chlorophyll concentration. Some indices are both response tovariations of vegetation and environmen...Recent studies have demonstrated the application of vegetation indices from canopy reflectedspectrum for inversion of chlorophyll concentration. Some indices are both response tovariations of vegetation and environmental factors. Canopy chlorophyll concentration, anindicator of photosynthesis activity, is related to nitrogen concentration in green vegetationand serves as an indicator of the crop response to soil nitrogen fertilizer application. Thecombination of normalized difference vegetation index (NDVI) and photochemical reflectanceindex (PRI) can reduce the effect of leaf area index (LAI) and soil background. The canopychlorophyll inversion index (CCII) was proved to be sensitive to chlorophyll concentration andvery resistant to the other variations. This paper introduced the ratio of TCARI/OSAVI to makeaccurate predictions of winter wheat chlorophyll concentration under different cultivars. Itindicated that canopy chlorophyll concentration could be evaluated by some combined vegetationindices.展开更多
文摘Field spectrum pretreatment experiments were carried out, and denoising numerical experiment via lifting wavelet transform (LWT) was designed, and several famous test signals including blocks, bumps, heavy sine and doppler were processed via Lw'r in these experiment. And the field spectrum was processed via Lw'r. Experiments proved that SNRG-tO-SNRN curves have similar feature and they all have a peak. And SNRG of almost all employed wavelets have higher value with SNRN between 0 and 20 dB. When signal is at high SNR, the SNRG is very little, and the MSED of denoised signal became little by little. LWT is more suite to denoise the low SNR or heavy noise contaminated signals. Bior4.4 have wider SNRN interval for denoising comparing with other five wavelets, includ- ing haar, db6, sym6, bior2.2 and bior3.3. Original field spectrum is processed by 3 stage liftings based on bior4.4 to denoise the trivial noise-contaminated regions. On processing the water band signal, logarithm transform is firstly taken. And then the spectrum is denoised via LWT based on bior4.4. The results show that an excellent denoised spectrum can be get, especially between 350 nm and 1 800 nm, and between 1 960 nm to 2 500 nm. While there is still a bump around 1 900 nm, this maybe due to the spectrum machine's limited precision.
基金support provided for this research by the Special Funds for Major State Basic Research Project(G20000779)the 863 National Project(2002AA243011,2003AA209010 and H020821020130)
文摘Recent studies have demonstrated the application of vegetation indices from canopy reflectedspectrum for inversion of chlorophyll concentration. Some indices are both response tovariations of vegetation and environmental factors. Canopy chlorophyll concentration, anindicator of photosynthesis activity, is related to nitrogen concentration in green vegetationand serves as an indicator of the crop response to soil nitrogen fertilizer application. Thecombination of normalized difference vegetation index (NDVI) and photochemical reflectanceindex (PRI) can reduce the effect of leaf area index (LAI) and soil background. The canopychlorophyll inversion index (CCII) was proved to be sensitive to chlorophyll concentration andvery resistant to the other variations. This paper introduced the ratio of TCARI/OSAVI to makeaccurate predictions of winter wheat chlorophyll concentration under different cultivars. Itindicated that canopy chlorophyll concentration could be evaluated by some combined vegetationindices.