Active disturbance rejection controller(ADRC)uses tracking-differentiator(TD)to solve the contradiction between the overshoot and the rapid nature.Fractional order proportion integral derivative(PID)controller i...Active disturbance rejection controller(ADRC)uses tracking-differentiator(TD)to solve the contradiction between the overshoot and the rapid nature.Fractional order proportion integral derivative(PID)controller improves the control quality and expands the stable region of the system parameters.ADRC fractional order(ADRFO)PID controller is designed by combining ADRC with the fractional order PID and applied to reentry attitude control of hypersonic vehicle.Simulation results show that ADRFO PID controller has better control effect and greater stable region for the strong nonlinear model of hypersonic flight vehicle under the influence of external disturbance,and has stronger robustness against the perturbation in system parameters.展开更多
Platooning represents one of the key features that connected automated vehicles may possess as it allows multiple automated vehicles to be maneuvered cooperatively with small headways on roads. However, a critical cha...Platooning represents one of the key features that connected automated vehicles may possess as it allows multiple automated vehicles to be maneuvered cooperatively with small headways on roads. However, a critical challenge in accomplishing automated vehicle platoons is to deal with the effects of intermittent and sporadic vehicle-to-vehicle data transmissions caused by limited wireless communication resources. This paper addresses the co-design problem of dynamic event-triggered communication scheduling and cooperative adaptive cruise control for a convoy of automated vehicles with diverse spacing policies. The central aim is to achieve automated vehicle platooning under various gap references with desired platoon stability and spacing performance requirements, while simultaneously improving communication efficiency. Toward this aim, a dynamic event-triggered scheduling mechanism is developed such that the intervehicle data transmissions are scheduled dynamically and efficiently over time. Then, a tractable co-design criterion on the existence of both the admissible event-driven cooperative adaptive cruise control law and the desired scheduling mechanism is derived. Finally, comparative simulation results are presented to substantiate the effectiveness and merits of the obtained results.展开更多
Secure platooning control plays an important role in enhancing the cooperative driving safety of automated vehicles subject to various security vulnerabilities.This paper focuses on the distributed secure control issu...Secure platooning control plays an important role in enhancing the cooperative driving safety of automated vehicles subject to various security vulnerabilities.This paper focuses on the distributed secure control issue of automated vehicles affected by replay attacks.A proportional-integral-observer(PIO)with predetermined forgetting parameters is first constructed to acquire the dynamical information of vehicles.Then,a time-varying parameter and two positive scalars are employed to describe the temporal behavior of replay attacks.In light of such a scheme and the common properties of Laplace matrices,the closed-loop system with PIO-based controllers is transformed into a switched and time-delayed one.Furthermore,some sufficient conditions are derived to achieve the desired platooning performance by the view of the Lyapunov stability theory.The controller gains are analytically determined by resorting to the solution of certain matrix inequalities only dependent on maximum and minimum eigenvalues of communication topologies.Finally,a simulation example is provided to illustrate the effectiveness of the proposed control strategy.展开更多
Obstacle detection and platoon control for mixed traffic flows,comprising human-driven vehicles(HDVs)and connected and autonomous vehicles(CAVs),face challenges from uncertain disturbances,such as sensor faults,inaccu...Obstacle detection and platoon control for mixed traffic flows,comprising human-driven vehicles(HDVs)and connected and autonomous vehicles(CAVs),face challenges from uncertain disturbances,such as sensor faults,inaccurate driver operations,and mismatched model errors.Furthermore,misleading sensing information or malicious attacks in vehicular wireless networks can jeopardize CAVs’perception and platoon safety.In this paper,we develop a two-dimensional robust control method for a mixed platoon,including a single leading CAV and multiple following HDVs that incorpo-rate robust information sensing and platoon control.To effectively detect and locate unknown obstacles ahead of the leading CAV,we propose a cooperative vehicle-infrastructure sensing scheme and integrate it with an adaptive model predictive control scheme for the leading CAV.This sensing scheme fuses information from multiple nodes while suppressing malicious data from attackers to enhance robustness and attack resilience in a distributed and adaptive manner.Additionally,we propose a distributed car-following control scheme with robustness to guarantee the following HDVs,considering uncertain disturbances.We also provide theoretical proof of the string stability under this control framework.Finally,extensive simulations are conducted to validate our approach.The simulation results demonstrate that our method can effectively filter out misleading sensing information from malicious attackers,significantly reduce the mean-square deviation in obstacle sensing,and approach the theoretical error lower bound.Moreover,the proposed control method successfully achieves obstacle avoidance for the mixed platoon while ensuring stability and robustness in the face of external attacks and uncertain disturbances.展开更多
In recent years, the traffic congestion problem has become more and more serious, and the research on traffic system control has become a new hot spot. Studying the bifurcation characteristics of traffic flow systems ...In recent years, the traffic congestion problem has become more and more serious, and the research on traffic system control has become a new hot spot. Studying the bifurcation characteristics of traffic flow systems and designing control schemes for unstable pivots can alleviate the traffic congestion problem from a new perspective. In this work, the full-speed differential model considering the vehicle network environment is improved in order to adjust the traffic flow from the perspective of bifurcation control, the existence conditions of Hopf bifurcation and saddle-node bifurcation in the model are proved theoretically, and the stability mutation point for the stability of the transportation system is found. For the unstable bifurcation point, a nonlinear system feedback controller is designed by using Chebyshev polynomial approximation and stochastic feedback control method. The advancement, postponement, and elimination of Hopf bifurcation are achieved without changing the system equilibrium point, and the mutation behavior of the transportation system is controlled so as to alleviate the traffic congestion. The changes in the stability of complex traffic systems are explained through the bifurcation analysis, which can better capture the characteristics of the traffic flow. By adjusting the control parameters in the feedback controllers, the influence of the boundary conditions on the stability of the traffic system is adequately described, and the effects of the unstable focuses and saddle points on the system are suppressed to slow down the traffic flow. In addition, the unstable bifurcation points can be eliminated and the Hopf bifurcation can be controlled to advance, delay, and disappear,so as to realize the control of the stability behavior of the traffic system, which can help to alleviate the traffic congestion and describe the actual traffic phenomena as well.展开更多
Human agency has become increasingly limited in complex systems with increasingly automated decision-making capabilities.For instance,human occupants are passengers and do not have direct vehicle control in fully auto...Human agency has become increasingly limited in complex systems with increasingly automated decision-making capabilities.For instance,human occupants are passengers and do not have direct vehicle control in fully automated cars(i.e.,driverless cars).An interesting question is whether users are responsible for the accidents of these cars.Normative ethical and legal analyses frequently argue that individuals should not bear responsibility for harm beyond their control.Here,we consider human judgment of responsibility for accidents involving fully automated cars through three studies with seven experiments(N=2668).We compared the responsibility attributed to the occupants in three conditions:an owner in his private fully automated car,a passenger in a driverless robotaxi,and a passenger in a conventional taxi,where none of these three occupants have direct vehicle control over the involved vehicles that cause identical pedestrian injury.In contrast to normative analyses,we show that the occupants of driverless cars(private cars and robotaxis)are attributed more responsibility than conventional taxi passengers.This dilemma is robust across different contexts(e.g.,participants from China vs the Republic of Korea,participants with first-vs third-person perspectives,and occupant presence vs absence).Furthermore,we observe that this is not due to the perception that these occupants have greater control over driving but because they are more expected to foresee the potential consequences of using driverless cars.Our findings suggest that when driverless vehicles(private cars and taxis)cause harm,their users may face more social pressure,which public discourse and legal regulations should manage appropriately.展开更多
Model mismatches can cause multi-dimensional uncertainties for the receding horizon control strategies of automated vehicles(AVs).The uncertainties may lead to potentially hazardous behaviors when the AV tracks ideal ...Model mismatches can cause multi-dimensional uncertainties for the receding horizon control strategies of automated vehicles(AVs).The uncertainties may lead to potentially hazardous behaviors when the AV tracks ideal trajectories that are individually optimized by the AV's planning layer.To address this issue,this study proposes a safe motion planning and control(SMPAC)framework for AVs.For the control layer,a dynamic model including multi-dimensional uncertainties is established.A zonotopic tube-based robust model predictive control scheme is proposed to constrain the uncertain system in a bounded minimum robust positive invariant set.A flexible tube with varying cross-sections is constructed to reduce the controller conservatism.For the planning layer,a concept of safety sets,representing the geometric boundaries of the ego vehicle and obstacles under uncertainties,is proposed.The safety sets provide the basis for the subsequent evaluation and ranking of the generated trajectories.An efficient collision avoidance algorithm decides the desired trajectory through the intersection detection of the safety sets between the ego vehicle and obstacles.A numerical simulation and hardware-in-the-loop experiment validate the effectiveness and real-time performance of the SMPAC.The result of two driving scenarios indicates that the SMPAC can guarantee the safety of automated driving under multi-dimensional uncertainties.展开更多
The all-wheel drive(AWD)hybrid system is a research focus on high-performance new energy vehicles that can meet the demands of dynamic performance and passing ability.Simultaneous optimization of the power and economy...The all-wheel drive(AWD)hybrid system is a research focus on high-performance new energy vehicles that can meet the demands of dynamic performance and passing ability.Simultaneous optimization of the power and economy of hybrid vehicles becomes an issue.A unique multi-mode coupling(MMC)AWD hybrid system is presented to realize the distributed and centralized driving of the front and rear axles to achieve vectored distribution and full utilization of the system power between the axles of vehicles.Based on the parameters of the benchmarking model of a hybrid vehicle,the best model-predictive control-based energy management strategy is proposed.First,the drive system model was built after the analysis of the MMC-AWD’s drive modes.Next,three fundamental strategies were established to address power distribution adjustment and battery SOC maintenance when the SOC changed,which was followed by the design of a road driving force observer.Then,the energy consumption rate in the average time domain was processed before designing the minimum fuel consumption controller based on the equivalent fuel consumption coefficient.Finally,the advantage of the MMC-AWD was confirmed by comparison with the dynamic performance and economy of the BYD Song PLUS DMI-AWD.The findings indicate that,in comparison to the comparative hybrid system at road adhesion coefficients of 0.8 and 0.6,the MMC-AWD’s capacity to accelerate increases by 5.26%and 7.92%,respectively.When the road adhesion coefficient is 0.8,0.6,and 0.4,the maximum climbing ability increases by 14.22%,12.88%,and 4.55%,respectively.As a result,the dynamic performance is greatly enhanced,and the fuel savings rate per 100 km of mileage reaches 12.06%,which is also very economical.The proposed control strategies for the new hybrid AWD vehicle can optimize the power and economy simultaneously.展开更多
Regarding the lane keeping system,path tracking accuracy and lateral stability at high speeds need to be taken into account especially for commercial vehicles due to the characteristics of larger mass,longer wheelbase...Regarding the lane keeping system,path tracking accuracy and lateral stability at high speeds need to be taken into account especially for commercial vehicles due to the characteristics of larger mass,longer wheelbase and higher mass center.To improve the performance mentioned above comprehensively,the control strategy based on improved artificial potential field(APF)algorithm is proposed.In the paper,time to lane crossing(TLC)is introduced into the potential field function to enhance the accuracy of path tracking,meanwhile the vehicle dynamics parameters including yaw rate and lateral acceleration are chosen as the repulsive force field source.The lane keeping controller based on improved APF algorithm is designed and the stability of the control system is proved based on Lyapunov theory.In addition,adaptive inertial weight particle swarm optimization algorithm(AIWPSO)is applied to optimize the gain of each potential field function.The co-simulation results indicate that the comprehensive evaluation index respecting lane tracking accuracy and lateral stability is reduced remarkably.Finally,the proposed control strategy is verified by the HiL test.It provides a beneficial reference for dynamics control of commercial vehicles and enriches the theoretical development and practical application of artificial potential field method in the field of intelligent driving.展开更多
In this paper,guaranteed cost attitude tracking con-trol for uncertain quadrotor unmanned aerial vehicle(QUAV)under safety constraints is studied.First,an augmented system is constructed by the tracking error system a...In this paper,guaranteed cost attitude tracking con-trol for uncertain quadrotor unmanned aerial vehicle(QUAV)under safety constraints is studied.First,an augmented system is constructed by the tracking error system and reference system.This transformation aims to convert the tracking control prob-lem into a stabilization control problem.Then,control barrier function and disturbance attenuation function are designed to characterize the violations of safety constraints and tolerance of uncertain disturbances,and they are incorporated into the reward function as penalty items.Based on the modified reward function,the problem is simplified as the optimal regulation problem of the nominal augmented system,and a new Hamilton-Jacobi-Bellman equation is developed.Finally,critic-only rein-forcement learning algorithm with a concurrent learning tech-nique is employed to solve the Hamilton-Jacobi-Bellman equa-tion and obtain the optimal controller.The proposed algorithm can not only ensure the reward function within an upper bound in the presence of uncertain disturbances,but also enforce safety constraints.The performance of the algorithm is evaluated by the numerical simulation.展开更多
This paper investigates the tracking control problem for unmanned underwater vehicles(UUVs)systems with sensor faults,input saturation,and external disturbance caused by waves and ocean currents.An active sensor fault...This paper investigates the tracking control problem for unmanned underwater vehicles(UUVs)systems with sensor faults,input saturation,and external disturbance caused by waves and ocean currents.An active sensor fault-tolerant control scheme is proposed.First,the developed method only requires the inertia matrix of the UUV,without other dynamic information,and can handle both additive and multiplicative sensor faults.Subsequently,an adaptive fault-tolerant controller is designed to achieve asymptotic tracking control of the UUV by employing robust integral of the sign of error feedback method.It is shown that the effect of sensor faults is online estimated and compensated by an adaptive estimator.With the proposed controller,the tracking error and estimation error can asymptotically converge to zero.Finally,simulation results are performed to demonstrate the effectiveness of the proposed method.展开更多
Aiming at the time-optimal control problem of hypersonic vehicles(HSV)in ascending stage,a trigonometric regularization method(TRM)is introduced based on the indirect method of optimal control.This method avoids analy...Aiming at the time-optimal control problem of hypersonic vehicles(HSV)in ascending stage,a trigonometric regularization method(TRM)is introduced based on the indirect method of optimal control.This method avoids analyzing the switching function and distinguishing between singular control and bang-bang control,where the singular control problem is more complicated.While in bang-bang control,the costate variables are unsmooth due to the control jumping,resulting in difficulty in solving the two-point boundary value problem(TPBVP)induced by the indirect method.Aiming at the easy divergence when solving the TPBVP,the continuation method is introduced.This method uses the solution of the simplified problem as the initial value of the iteration.Then through solving a series of TPBVP,it approximates to the solution of the original complex problem.The calculation results show that through the above two methods,the time-optimal control problem of HSV in ascending stage under the complex model can be solved conveniently.展开更多
The couple between the power network and the transportation network(TN)is deepening gradually with the increasing penetration rate of electric vehicles(EV),which also poses a great challenge to the traditional voltage...The couple between the power network and the transportation network(TN)is deepening gradually with the increasing penetration rate of electric vehicles(EV),which also poses a great challenge to the traditional voltage control scheme.In this paper,we propose a coordinated voltage control strategy for the active distribution networks considering multiple types of EV.In the first stage,the action of on-load tap changer and capacitor banks,etc.,are determined by optimal power flow calculation,and the node electricity price is also determined based on dynamic time-of-use tariff mechanism.In the second stage,multiple operating scenarios of multiple types of EVs such as cabs,private cars and buses are considered,and the scheduling results of each EV are solved by building an optimization model based on constraints such as queuing theory,Floyd-Warshall algorithm and traffic flow information.In the third stage,the output power of photovoltaic and energy storage systems is fine-tuned in the normal control mode.The charging power of EVs is also regulated in the emergency control mode to reduce the voltage deviation,and the amount of regulation is calculated based on the fair voltage control mode of EVs.Finally,we test the modified IEEE 33-bus distribution system coupled with the 24-bus Beijing TN.The simulation results show that the proposed scheme can mitigate voltage violations well.展开更多
The reduction of energy consumption is an increasingly important topic of the railway system.Energy-efficient train control(EETC)is one solution,which refers to mathematically computing when to accelerate,which cruisi...The reduction of energy consumption is an increasingly important topic of the railway system.Energy-efficient train control(EETC)is one solution,which refers to mathematically computing when to accelerate,which cruising speed to hold,how long one should coast over a suitable space,and when to brake.Most approaches in literature and industry greatly simplify a lot of nonlinear effects,such that they ignore mostly the losses due to energy conversion in traction components and auxiliaries.To fill this research gap,a series of increasingly detailed nonlinear losses is described and modelled.We categorize an increasing detail in this representation as four levels.We study the impact of those levels of detail on the energy optimal speed trajectory.To do this,a standard approach based on dynamic programming is used,given constraints on total travel time.This evaluation of multiple test cases highlights the influence of the dynamic losses and the power consumption of auxiliary components on railway trajectories,also compared to multiple benchmarks.The results show how the losses can make up 50%of the total energy consumption for an exemplary trip.Ignoring them would though result in consistent but limited errors in the optimal trajectory.Overall,more complex trajectories can result in less energy consumption when including the complexity of nonlinear losses than when a simpler model is considered.Those effects are stronger when the trajectory includes many acceleration and braking phases.展开更多
This paper addresses the sampled-data multi-objective active suspension control problem for an in-wheel motor driven electric vehicle subject to stochastic sampling periods and asynchronous premise variables.The focus...This paper addresses the sampled-data multi-objective active suspension control problem for an in-wheel motor driven electric vehicle subject to stochastic sampling periods and asynchronous premise variables.The focus is placed on the scenario that the dynamical state of the half-vehicle active suspension system is transmitted over an in-vehicle controller area network that only permits the transmission of sampled data packets.For this purpose,a stochastic sampling mechanism is developed such that the sampling periods can randomly switch among different values with certain mathematical probabilities.Then,an asynchronous fuzzy sampled-data controller,featuring distinct premise variables from the active suspension system,is constructed to eliminate the stringent requirement that the sampled-data controller has to share the same grades of membership.Furthermore,novel criteria for both stability analysis and controller design are derived in order to guarantee that the resultant closed-loop active suspension system is stochastically stable with simultaneous𝐻2 and𝐻∞performance requirements.Finally,the effectiveness of the proposed stochastic sampled-data multi-objective control method is verified via several numerical cases studies in both time domain and frequency domain under various road disturbance profiles.展开更多
As government agencies continue to tighten emissions regulations due to the continued increase in greenhouse gas production, automotive industries are seeking to produce increasingly efficient vehicle technology. Hybr...As government agencies continue to tighten emissions regulations due to the continued increase in greenhouse gas production, automotive industries are seeking to produce increasingly efficient vehicle technology. Hybrid electric vehicles (HEVs) have been introduced to mitigate problems while improving fuel economy. HEVs have led to the demand of creating more advanced controls software to consider multiple components for propulsive power in a vehicle. A large section in the software development process is the implementation of an optimal energy management strategy meant to improve the overall fuel efficiency of the vehicle. Optimal strategies can be implemented when driving conditions are known a prior. The Equivalent Consumption Minimization Strategy (ECMS) is an optimal control strategy that uses an equivalence factor to equate electrical to mechanical power when performing torque split determination between the internal combustion engine and electric motor for propulsive and regenerative torque. This equivalence factor is determined from offline vehicle simulations using a sensitivity analysis to provide optimal fuel economy results while maintaining predetermined high voltage battery state of charge (SOC) constraints. When the control hierarchy is modified or different driving styles are applied, the analysis must be redone to update the equivalence factor. The goal of this work is to implement a fuzzy logic controller that dynamically updates the equivalence factor to improve fuel economy, maintain a strict charge sustaining window of operation for the high voltage battery, and reduce computational time required during algorithm development. The adaptive algorithm is validated against global optimum fuel economy and charge sustaining results from a sensitivity analysis performed for multiple drive cycles. Results show a maximum fuel economy improvement of 9.82% when using a mild driving style and a 95% success rate when maintaining an ending SOC within 5% of the desired SOC regardless of starting SOC.展开更多
The problem of fault-tolerant control is discussed for the longitudinal model of an airbreathing hypersonic vehicle (AHV) with actuator faults and external disturbances. Firstly, a fault-tolerant control strategy is...The problem of fault-tolerant control is discussed for the longitudinal model of an airbreathing hypersonic vehicle (AHV) with actuator faults and external disturbances. Firstly, a fault-tolerant control strategy is presented for the longitudinal model of an AHV, which guarantees that velocity and altitude track their reference trajectories at an exponential convergence rate. However, this method needs to know the minimum value of the actuator efficiency factor and the upper bound of the external disturbances, which makes it not easy to implement. Then an improved adaptive fault-tolerant control scheme is proposed, where two adaptive laws are employed to estimate the upper bound of the external disturbances and the minimum value of the actuator efficiency factor, respectively. Secondly, the problem of designing a control scheme with control constraints is further considered, and a new adaptive fault-tolerant control strategy with input saturation is designed to guarantee that velocity and altitude track their reference trajectories. Finally, simulation results are given to show the effectiveness of the proposed methods.展开更多
This paper proposes an adaptive augmentation control design approach of the gain-scheduled controller.This extension is motivated by the need for augmentation of the baseline gainscheduled controller.The proposed appr...This paper proposes an adaptive augmentation control design approach of the gain-scheduled controller.This extension is motivated by the need for augmentation of the baseline gainscheduled controller.The proposed approach can be utilized to design flight control systems for advanced aerospace vehicles with a large parameter variation.The flight dynamics within the flight envelope is described by a switched nonlinear system,which is essentially a switched polytopic system with uncertainties.The flight control system consists of a baseline gain-scheduled controller and a model reference adaptive augmentation controller,while the latter can recover the nominal performance of the gainscheduled controlled system under large uncertainties.By the multiple Lyapunov functions method,it is proved that the switched nonlinear system is uniformly ultimately bounded.To validate the effectiveness of the proposed approach,this approach is applied to a generic hypersonic vehicle,and the simulation results show that the system output tracks the command signal well even when large uncertainties exist.展开更多
A modified skyhook-based semi-active controller is proposed for implementing an asymmetric control suspension design with symmetric magneto-rheological (MR) dampers. The controller is formulated in current form, whi...A modified skyhook-based semi-active controller is proposed for implementing an asymmetric control suspension design with symmetric magneto-rheological (MR) dampers. The controller is formulated in current form, which is modulated by integrating a continuous modulation and an asymmetric damping force generation algorithms, so as to effectively minimize switching and hysteretic effects from the MR-damper. The proposed controller is implemented with a quarter-vehicle MR-suspension model, and its relative response characteristics are thus evaluated in terms of defined performance measures under varying amplitude harmonic, rounded pulse and random excitations. The sensitivity of the semi-active suspension performance to variations in controller parameters is thoroughly evaluated. The results illustrate that the proposed skyhook-based asymmetric semi-active MR-suspension controller has superior robustness on the system parameter variations, and can achieve desirable multi-objective suspension performance.展开更多
基金Supported by the Innovation Foundation of Aerospace Science and Technology(CASC200902)~~
文摘Active disturbance rejection controller(ADRC)uses tracking-differentiator(TD)to solve the contradiction between the overshoot and the rapid nature.Fractional order proportion integral derivative(PID)controller improves the control quality and expands the stable region of the system parameters.ADRC fractional order(ADRFO)PID controller is designed by combining ADRC with the fractional order PID and applied to reentry attitude control of hypersonic vehicle.Simulation results show that ADRFO PID controller has better control effect and greater stable region for the strong nonlinear model of hypersonic flight vehicle under the influence of external disturbance,and has stronger robustness against the perturbation in system parameters.
基金supported in part by the Australian Research Council Discovery Early Career Researcher Award(DE200101128)。
文摘Platooning represents one of the key features that connected automated vehicles may possess as it allows multiple automated vehicles to be maneuvered cooperatively with small headways on roads. However, a critical challenge in accomplishing automated vehicle platoons is to deal with the effects of intermittent and sporadic vehicle-to-vehicle data transmissions caused by limited wireless communication resources. This paper addresses the co-design problem of dynamic event-triggered communication scheduling and cooperative adaptive cruise control for a convoy of automated vehicles with diverse spacing policies. The central aim is to achieve automated vehicle platooning under various gap references with desired platoon stability and spacing performance requirements, while simultaneously improving communication efficiency. Toward this aim, a dynamic event-triggered scheduling mechanism is developed such that the intervehicle data transmissions are scheduled dynamically and efficiently over time. Then, a tractable co-design criterion on the existence of both the admissible event-driven cooperative adaptive cruise control law and the desired scheduling mechanism is derived. Finally, comparative simulation results are presented to substantiate the effectiveness and merits of the obtained results.
基金supported in part by the National Natural Science Foundation of China (61973219,U21A2019,61873058)the Hainan Province Science and Technology Special Fund (ZDYF2022SHFZ105)。
文摘Secure platooning control plays an important role in enhancing the cooperative driving safety of automated vehicles subject to various security vulnerabilities.This paper focuses on the distributed secure control issue of automated vehicles affected by replay attacks.A proportional-integral-observer(PIO)with predetermined forgetting parameters is first constructed to acquire the dynamical information of vehicles.Then,a time-varying parameter and two positive scalars are employed to describe the temporal behavior of replay attacks.In light of such a scheme and the common properties of Laplace matrices,the closed-loop system with PIO-based controllers is transformed into a switched and time-delayed one.Furthermore,some sufficient conditions are derived to achieve the desired platooning performance by the view of the Lyapunov stability theory.The controller gains are analytically determined by resorting to the solution of certain matrix inequalities only dependent on maximum and minimum eigenvalues of communication topologies.Finally,a simulation example is provided to illustrate the effectiveness of the proposed control strategy.
基金supported by the National Key Research and the Development Program of China(2022YFC3803700)the National Natural Science Foundation of China(52202391 and U20A20155).
文摘Obstacle detection and platoon control for mixed traffic flows,comprising human-driven vehicles(HDVs)and connected and autonomous vehicles(CAVs),face challenges from uncertain disturbances,such as sensor faults,inaccurate driver operations,and mismatched model errors.Furthermore,misleading sensing information or malicious attacks in vehicular wireless networks can jeopardize CAVs’perception and platoon safety.In this paper,we develop a two-dimensional robust control method for a mixed platoon,including a single leading CAV and multiple following HDVs that incorpo-rate robust information sensing and platoon control.To effectively detect and locate unknown obstacles ahead of the leading CAV,we propose a cooperative vehicle-infrastructure sensing scheme and integrate it with an adaptive model predictive control scheme for the leading CAV.This sensing scheme fuses information from multiple nodes while suppressing malicious data from attackers to enhance robustness and attack resilience in a distributed and adaptive manner.Additionally,we propose a distributed car-following control scheme with robustness to guarantee the following HDVs,considering uncertain disturbances.We also provide theoretical proof of the string stability under this control framework.Finally,extensive simulations are conducted to validate our approach.The simulation results demonstrate that our method can effectively filter out misleading sensing information from malicious attackers,significantly reduce the mean-square deviation in obstacle sensing,and approach the theoretical error lower bound.Moreover,the proposed control method successfully achieves obstacle avoidance for the mixed platoon while ensuring stability and robustness in the face of external attacks and uncertain disturbances.
基金Project supported by the National Natural Science Foundation of China(Grant No.72361031)the Gansu Province University Youth Doctoral Support Project(Grant No.2023QB-049)。
文摘In recent years, the traffic congestion problem has become more and more serious, and the research on traffic system control has become a new hot spot. Studying the bifurcation characteristics of traffic flow systems and designing control schemes for unstable pivots can alleviate the traffic congestion problem from a new perspective. In this work, the full-speed differential model considering the vehicle network environment is improved in order to adjust the traffic flow from the perspective of bifurcation control, the existence conditions of Hopf bifurcation and saddle-node bifurcation in the model are proved theoretically, and the stability mutation point for the stability of the transportation system is found. For the unstable bifurcation point, a nonlinear system feedback controller is designed by using Chebyshev polynomial approximation and stochastic feedback control method. The advancement, postponement, and elimination of Hopf bifurcation are achieved without changing the system equilibrium point, and the mutation behavior of the transportation system is controlled so as to alleviate the traffic congestion. The changes in the stability of complex traffic systems are explained through the bifurcation analysis, which can better capture the characteristics of the traffic flow. By adjusting the control parameters in the feedback controllers, the influence of the boundary conditions on the stability of the traffic system is adequately described, and the effects of the unstable focuses and saddle points on the system are suppressed to slow down the traffic flow. In addition, the unstable bifurcation points can be eliminated and the Hopf bifurcation can be controlled to advance, delay, and disappear,so as to realize the control of the stability behavior of the traffic system, which can help to alleviate the traffic congestion and describe the actual traffic phenomena as well.
基金supported by the National Natural Science Foundation of China(72071143)。
文摘Human agency has become increasingly limited in complex systems with increasingly automated decision-making capabilities.For instance,human occupants are passengers and do not have direct vehicle control in fully automated cars(i.e.,driverless cars).An interesting question is whether users are responsible for the accidents of these cars.Normative ethical and legal analyses frequently argue that individuals should not bear responsibility for harm beyond their control.Here,we consider human judgment of responsibility for accidents involving fully automated cars through three studies with seven experiments(N=2668).We compared the responsibility attributed to the occupants in three conditions:an owner in his private fully automated car,a passenger in a driverless robotaxi,and a passenger in a conventional taxi,where none of these three occupants have direct vehicle control over the involved vehicles that cause identical pedestrian injury.In contrast to normative analyses,we show that the occupants of driverless cars(private cars and robotaxis)are attributed more responsibility than conventional taxi passengers.This dilemma is robust across different contexts(e.g.,participants from China vs the Republic of Korea,participants with first-vs third-person perspectives,and occupant presence vs absence).Furthermore,we observe that this is not due to the perception that these occupants have greater control over driving but because they are more expected to foresee the potential consequences of using driverless cars.Our findings suggest that when driverless vehicles(private cars and taxis)cause harm,their users may face more social pressure,which public discourse and legal regulations should manage appropriately.
基金supported by the National Natural Science Foundation of China(51875061)China Scholarship Council(202206050107)。
文摘Model mismatches can cause multi-dimensional uncertainties for the receding horizon control strategies of automated vehicles(AVs).The uncertainties may lead to potentially hazardous behaviors when the AV tracks ideal trajectories that are individually optimized by the AV's planning layer.To address this issue,this study proposes a safe motion planning and control(SMPAC)framework for AVs.For the control layer,a dynamic model including multi-dimensional uncertainties is established.A zonotopic tube-based robust model predictive control scheme is proposed to constrain the uncertain system in a bounded minimum robust positive invariant set.A flexible tube with varying cross-sections is constructed to reduce the controller conservatism.For the planning layer,a concept of safety sets,representing the geometric boundaries of the ego vehicle and obstacles under uncertainties,is proposed.The safety sets provide the basis for the subsequent evaluation and ranking of the generated trajectories.An efficient collision avoidance algorithm decides the desired trajectory through the intersection detection of the safety sets between the ego vehicle and obstacles.A numerical simulation and hardware-in-the-loop experiment validate the effectiveness and real-time performance of the SMPAC.The result of two driving scenarios indicates that the SMPAC can guarantee the safety of automated driving under multi-dimensional uncertainties.
基金Supported by Hebei Provincial Natural Science Foundation of China(Grant Nos.E2020203174,E2020203078)S&T Program of Hebei Province of China(Grant No.226Z2202G)Science Research Project of Hebei Provincial Education Department of China(Grant No.ZD2022029).
文摘The all-wheel drive(AWD)hybrid system is a research focus on high-performance new energy vehicles that can meet the demands of dynamic performance and passing ability.Simultaneous optimization of the power and economy of hybrid vehicles becomes an issue.A unique multi-mode coupling(MMC)AWD hybrid system is presented to realize the distributed and centralized driving of the front and rear axles to achieve vectored distribution and full utilization of the system power between the axles of vehicles.Based on the parameters of the benchmarking model of a hybrid vehicle,the best model-predictive control-based energy management strategy is proposed.First,the drive system model was built after the analysis of the MMC-AWD’s drive modes.Next,three fundamental strategies were established to address power distribution adjustment and battery SOC maintenance when the SOC changed,which was followed by the design of a road driving force observer.Then,the energy consumption rate in the average time domain was processed before designing the minimum fuel consumption controller based on the equivalent fuel consumption coefficient.Finally,the advantage of the MMC-AWD was confirmed by comparison with the dynamic performance and economy of the BYD Song PLUS DMI-AWD.The findings indicate that,in comparison to the comparative hybrid system at road adhesion coefficients of 0.8 and 0.6,the MMC-AWD’s capacity to accelerate increases by 5.26%and 7.92%,respectively.When the road adhesion coefficient is 0.8,0.6,and 0.4,the maximum climbing ability increases by 14.22%,12.88%,and 4.55%,respectively.As a result,the dynamic performance is greatly enhanced,and the fuel savings rate per 100 km of mileage reaches 12.06%,which is also very economical.The proposed control strategies for the new hybrid AWD vehicle can optimize the power and economy simultaneously.
基金Supported by National Natural Science Foundation of China(Grant Nos.51605199,U20A20333,52225212)Six Talent Peak Funding Projects in Jiangsu Province of China(Grant No.2019-GDZB-084)Key Science and Technology Support Program in Taizhou City of China(Grant No.TG202307).
文摘Regarding the lane keeping system,path tracking accuracy and lateral stability at high speeds need to be taken into account especially for commercial vehicles due to the characteristics of larger mass,longer wheelbase and higher mass center.To improve the performance mentioned above comprehensively,the control strategy based on improved artificial potential field(APF)algorithm is proposed.In the paper,time to lane crossing(TLC)is introduced into the potential field function to enhance the accuracy of path tracking,meanwhile the vehicle dynamics parameters including yaw rate and lateral acceleration are chosen as the repulsive force field source.The lane keeping controller based on improved APF algorithm is designed and the stability of the control system is proved based on Lyapunov theory.In addition,adaptive inertial weight particle swarm optimization algorithm(AIWPSO)is applied to optimize the gain of each potential field function.The co-simulation results indicate that the comprehensive evaluation index respecting lane tracking accuracy and lateral stability is reduced remarkably.Finally,the proposed control strategy is verified by the HiL test.It provides a beneficial reference for dynamics control of commercial vehicles and enriches the theoretical development and practical application of artificial potential field method in the field of intelligent driving.
基金supported in part by the National Science Foundation of China(62173183)。
文摘In this paper,guaranteed cost attitude tracking con-trol for uncertain quadrotor unmanned aerial vehicle(QUAV)under safety constraints is studied.First,an augmented system is constructed by the tracking error system and reference system.This transformation aims to convert the tracking control prob-lem into a stabilization control problem.Then,control barrier function and disturbance attenuation function are designed to characterize the violations of safety constraints and tolerance of uncertain disturbances,and they are incorporated into the reward function as penalty items.Based on the modified reward function,the problem is simplified as the optimal regulation problem of the nominal augmented system,and a new Hamilton-Jacobi-Bellman equation is developed.Finally,critic-only rein-forcement learning algorithm with a concurrent learning tech-nique is employed to solve the Hamilton-Jacobi-Bellman equa-tion and obtain the optimal controller.The proposed algorithm can not only ensure the reward function within an upper bound in the presence of uncertain disturbances,but also enforce safety constraints.The performance of the algorithm is evaluated by the numerical simulation.
基金the National Natural Science Foundation of China(62303012,62236002,61911004,62303008)。
文摘This paper investigates the tracking control problem for unmanned underwater vehicles(UUVs)systems with sensor faults,input saturation,and external disturbance caused by waves and ocean currents.An active sensor fault-tolerant control scheme is proposed.First,the developed method only requires the inertia matrix of the UUV,without other dynamic information,and can handle both additive and multiplicative sensor faults.Subsequently,an adaptive fault-tolerant controller is designed to achieve asymptotic tracking control of the UUV by employing robust integral of the sign of error feedback method.It is shown that the effect of sensor faults is online estimated and compensated by an adaptive estimator.With the proposed controller,the tracking error and estimation error can asymptotically converge to zero.Finally,simulation results are performed to demonstrate the effectiveness of the proposed method.
基金supported by the Na-tional Natural Science Foundation of China(No.52272369).
文摘Aiming at the time-optimal control problem of hypersonic vehicles(HSV)in ascending stage,a trigonometric regularization method(TRM)is introduced based on the indirect method of optimal control.This method avoids analyzing the switching function and distinguishing between singular control and bang-bang control,where the singular control problem is more complicated.While in bang-bang control,the costate variables are unsmooth due to the control jumping,resulting in difficulty in solving the two-point boundary value problem(TPBVP)induced by the indirect method.Aiming at the easy divergence when solving the TPBVP,the continuation method is introduced.This method uses the solution of the simplified problem as the initial value of the iteration.Then through solving a series of TPBVP,it approximates to the solution of the original complex problem.The calculation results show that through the above two methods,the time-optimal control problem of HSV in ascending stage under the complex model can be solved conveniently.
基金supported by the Science and Technology Project of North China Electric Power Research Institute,which is“Research on Key Technologies for Power Quality Evaluation and Improvement of New Distribution Network Based on Collaborative Interaction of Source-Network-Load-Storage”(KJZ2022016).
文摘The couple between the power network and the transportation network(TN)is deepening gradually with the increasing penetration rate of electric vehicles(EV),which also poses a great challenge to the traditional voltage control scheme.In this paper,we propose a coordinated voltage control strategy for the active distribution networks considering multiple types of EV.In the first stage,the action of on-load tap changer and capacitor banks,etc.,are determined by optimal power flow calculation,and the node electricity price is also determined based on dynamic time-of-use tariff mechanism.In the second stage,multiple operating scenarios of multiple types of EVs such as cabs,private cars and buses are considered,and the scheduling results of each EV are solved by building an optimization model based on constraints such as queuing theory,Floyd-Warshall algorithm and traffic flow information.In the third stage,the output power of photovoltaic and energy storage systems is fine-tuned in the normal control mode.The charging power of EVs is also regulated in the emergency control mode to reduce the voltage deviation,and the amount of regulation is calculated based on the fair voltage control mode of EVs.Finally,we test the modified IEEE 33-bus distribution system coupled with the 24-bus Beijing TN.The simulation results show that the proposed scheme can mitigate voltage violations well.
基金supported by Swiss Federal Office of Transport,the ETH foundation and via the grant RAILPOWER.
文摘The reduction of energy consumption is an increasingly important topic of the railway system.Energy-efficient train control(EETC)is one solution,which refers to mathematically computing when to accelerate,which cruising speed to hold,how long one should coast over a suitable space,and when to brake.Most approaches in literature and industry greatly simplify a lot of nonlinear effects,such that they ignore mostly the losses due to energy conversion in traction components and auxiliaries.To fill this research gap,a series of increasingly detailed nonlinear losses is described and modelled.We categorize an increasing detail in this representation as four levels.We study the impact of those levels of detail on the energy optimal speed trajectory.To do this,a standard approach based on dynamic programming is used,given constraints on total travel time.This evaluation of multiple test cases highlights the influence of the dynamic losses and the power consumption of auxiliary components on railway trajectories,also compared to multiple benchmarks.The results show how the losses can make up 50%of the total energy consumption for an exemplary trip.Ignoring them would though result in consistent but limited errors in the optimal trajectory.Overall,more complex trajectories can result in less energy consumption when including the complexity of nonlinear losses than when a simpler model is considered.Those effects are stronger when the trajectory includes many acceleration and braking phases.
文摘This paper addresses the sampled-data multi-objective active suspension control problem for an in-wheel motor driven electric vehicle subject to stochastic sampling periods and asynchronous premise variables.The focus is placed on the scenario that the dynamical state of the half-vehicle active suspension system is transmitted over an in-vehicle controller area network that only permits the transmission of sampled data packets.For this purpose,a stochastic sampling mechanism is developed such that the sampling periods can randomly switch among different values with certain mathematical probabilities.Then,an asynchronous fuzzy sampled-data controller,featuring distinct premise variables from the active suspension system,is constructed to eliminate the stringent requirement that the sampled-data controller has to share the same grades of membership.Furthermore,novel criteria for both stability analysis and controller design are derived in order to guarantee that the resultant closed-loop active suspension system is stochastically stable with simultaneous𝐻2 and𝐻∞performance requirements.Finally,the effectiveness of the proposed stochastic sampled-data multi-objective control method is verified via several numerical cases studies in both time domain and frequency domain under various road disturbance profiles.
文摘As government agencies continue to tighten emissions regulations due to the continued increase in greenhouse gas production, automotive industries are seeking to produce increasingly efficient vehicle technology. Hybrid electric vehicles (HEVs) have been introduced to mitigate problems while improving fuel economy. HEVs have led to the demand of creating more advanced controls software to consider multiple components for propulsive power in a vehicle. A large section in the software development process is the implementation of an optimal energy management strategy meant to improve the overall fuel efficiency of the vehicle. Optimal strategies can be implemented when driving conditions are known a prior. The Equivalent Consumption Minimization Strategy (ECMS) is an optimal control strategy that uses an equivalence factor to equate electrical to mechanical power when performing torque split determination between the internal combustion engine and electric motor for propulsive and regenerative torque. This equivalence factor is determined from offline vehicle simulations using a sensitivity analysis to provide optimal fuel economy results while maintaining predetermined high voltage battery state of charge (SOC) constraints. When the control hierarchy is modified or different driving styles are applied, the analysis must be redone to update the equivalence factor. The goal of this work is to implement a fuzzy logic controller that dynamically updates the equivalence factor to improve fuel economy, maintain a strict charge sustaining window of operation for the high voltage battery, and reduce computational time required during algorithm development. The adaptive algorithm is validated against global optimum fuel economy and charge sustaining results from a sensitivity analysis performed for multiple drive cycles. Results show a maximum fuel economy improvement of 9.82% when using a mild driving style and a 95% success rate when maintaining an ending SOC within 5% of the desired SOC regardless of starting SOC.
基金supported by National Natural Science Foundation of China(61125306,61273092,61301035,61304018,and 61411130160)National HighTechnology Research and Development Program of China(2014AA051901)+4 种基金Tianjin Science and Technology Supporting Program(14JCQNJC05400)Research Innovation Program of Tianjin University(2013XQ0101)Hubei Science and Technology Supporting Program(XYJ2014000314)Science Foundation of China Supported by Science and Technology on Aircraft Control Laboratory(20125848004)China Post-doctoral Science Foundation(2014M561559)
基金supported by the National Natural Science Foundation of China(9101600461125306+2 种基金61203011)the Program for New Century Excellent Talents in University (NCET-10-0328)the Natural Science Foundation of Jiangsu Province(BK2012327)
文摘The problem of fault-tolerant control is discussed for the longitudinal model of an airbreathing hypersonic vehicle (AHV) with actuator faults and external disturbances. Firstly, a fault-tolerant control strategy is presented for the longitudinal model of an AHV, which guarantees that velocity and altitude track their reference trajectories at an exponential convergence rate. However, this method needs to know the minimum value of the actuator efficiency factor and the upper bound of the external disturbances, which makes it not easy to implement. Then an improved adaptive fault-tolerant control scheme is proposed, where two adaptive laws are employed to estimate the upper bound of the external disturbances and the minimum value of the actuator efficiency factor, respectively. Secondly, the problem of designing a control scheme with control constraints is further considered, and a new adaptive fault-tolerant control strategy with input saturation is designed to guarantee that velocity and altitude track their reference trajectories. Finally, simulation results are given to show the effectiveness of the proposed methods.
基金supported by the National Natural Science Fundation of China(6097401461273083)
文摘This paper proposes an adaptive augmentation control design approach of the gain-scheduled controller.This extension is motivated by the need for augmentation of the baseline gainscheduled controller.The proposed approach can be utilized to design flight control systems for advanced aerospace vehicles with a large parameter variation.The flight dynamics within the flight envelope is described by a switched nonlinear system,which is essentially a switched polytopic system with uncertainties.The flight control system consists of a baseline gain-scheduled controller and a model reference adaptive augmentation controller,while the latter can recover the nominal performance of the gainscheduled controlled system under large uncertainties.By the multiple Lyapunov functions method,it is proved that the switched nonlinear system is uniformly ultimately bounded.To validate the effectiveness of the proposed approach,this approach is applied to a generic hypersonic vehicle,and the simulation results show that the system output tracks the command signal well even when large uncertainties exist.
基金supported by Senior Visiting Scholarship of Chinese Scholarship Council (No.20H05002)Natural Science Foundation of Education Commission of Jiangsu Province, China (No.03KJB510072)Six Categories of Summit Talents of Jiangsu Province, China (No. 2006194).
文摘A modified skyhook-based semi-active controller is proposed for implementing an asymmetric control suspension design with symmetric magneto-rheological (MR) dampers. The controller is formulated in current form, which is modulated by integrating a continuous modulation and an asymmetric damping force generation algorithms, so as to effectively minimize switching and hysteretic effects from the MR-damper. The proposed controller is implemented with a quarter-vehicle MR-suspension model, and its relative response characteristics are thus evaluated in terms of defined performance measures under varying amplitude harmonic, rounded pulse and random excitations. The sensitivity of the semi-active suspension performance to variations in controller parameters is thoroughly evaluated. The results illustrate that the proposed skyhook-based asymmetric semi-active MR-suspension controller has superior robustness on the system parameter variations, and can achieve desirable multi-objective suspension performance.