期刊文献+
共找到103篇文章
< 1 2 6 >
每页显示 20 50 100
Advances in Active Suspension Systems for Road Vehicles
1
作者 Min Yu Simos AEvangelou Daniele Dini 《Engineering》 SCIE EI CAS CSCD 2024年第2期160-177,共18页
Active suspension systems(ASSs)have been proposed and developed for a few decades,and have now once again become a thriving topic in both academia and industry,due to the high demand for driving comfort and safety and... Active suspension systems(ASSs)have been proposed and developed for a few decades,and have now once again become a thriving topic in both academia and industry,due to the high demand for driving comfort and safety and the compatibility of ASSs with vehicle electrification and autonomy.Existing review papers on ASSs mainly cover dynamics modeling and robust control;however,the gap between academic research outcomes and industrial application requirements has not yet been bridged,hindering most ASS research knowledge from being transferred to vehicle companies.This paper comprehensively reviews advances in ASSs for road vehicles,with a focus on hardware structures and control strategies.In particular,state-of-the-art ASSs that have been recently adopted in production cars are discussed in detail,including the representative solutions of Mercedes active body control(ABC)and Audi predictive active suspension;novel concepts that could become alternative candidates are also introduced,including series active variable geometry suspension,and the active wheel-alignment system.ASSs with compact structure,small mass increment,low power consumption,high-frequency response,acceptable economic costs,and high reliability are more likely to be adopted by car manufacturers.In terms of control strategies,the development of future ASSs aims not only to stabilize the chassis attitude and attenuate the chassis vibration,but also to enable ASSs to cooperate with other modules(e.g.,steering and braking)and sensors(e.g.,cameras)within a car,and even with high-level decision-making(e.g.,reference driving speed)in the overall transportation system-strategies that will be compatible with the rapidly developing electric and autonomous vehicles. 展开更多
关键词 Active suspension vehicle dynamics Robust control Ride comfort Chassis attitude
下载PDF
Fuzzy Chaos Control for Vehicle Lateral Dynamics Based on Active Suspension System 被引量:7
2
作者 HUANG Chen CHEN Long +2 位作者 JIANG Haobin YUAN Chaochun XIA Tian 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2014年第4期793-801,共9页
The existing research of the active suspension system(ASS) mainly focuses on the different evaluation indexes and control strategies. Among the different components, the nonlinear characteristics of practical system... The existing research of the active suspension system(ASS) mainly focuses on the different evaluation indexes and control strategies. Among the different components, the nonlinear characteristics of practical systems and control are usually not considered for vehicle lateral dynamics. But the vehicle model has some shortages on tyre model with side-slip angle, road adhesion coefficient, vertical load and velocity. In this paper, the nonlinear dynamic model of lateral system is considered and also the adaptive neural network of tire is introduced. By nonlinear analysis methods, such as the bifurcation diagram and Lyapunov exponent, it has shown that the lateral dynamics exhibits complicated motions with the forward speed. Then, a fuzzy control method is applied to the lateral system aiming to convert chaos into periodic motion using the linear-state feedback of an available lateral force with changing tire load. Finally, the rapid control prototyping is built to conduct the real vehicle test. By comparison of time response diagram, phase portraits and Lyapunov exponents at different work conditions, the results on step input and S-shaped road indicate that the slip angle and yaw velocity of lateral dynamics enter into stable domain and the results of test are consistent to the simulation and verified the correctness of simulation. And the Lyapunov exponents of the closed-loop system are becoming from positive to negative. This research proposes a fuzzy control method which has sufficient suppress chaotic motions as an effective active suspension system. 展开更多
关键词 chaos control FUZZY active suspension system vehicle lateral dynamics
下载PDF
Integrated Control of Lateral and Vertical Vehicle Dynamics Based on Multi-agent System 被引量:3
3
作者 HUANG Chen CHEN Long +2 位作者 YUN Chaochun JIANG Haobin CHEN Yuexia 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2014年第2期304-318,共15页
The existing research of the integrated chassis control mainly focuses on the different evaluation indexes and control strategy. Among the different evaluation indexes, the comprehensive properties are usually not con... The existing research of the integrated chassis control mainly focuses on the different evaluation indexes and control strategy. Among the different evaluation indexes, the comprehensive properties are usually not considered based on the non-linear superposition principle. But, the control strategy has some shortages on tyre model with side-slip angle, road adhesion coefficient, vertical load and velocity. In this paper, based on belief, desire and intention(BDI)-agent model framework, the TYRE agent, electric power steering(EPS) agent and active suspension system(ASS) agent are proposed. In the system(SYS) agent, the coordination mechanism is employed to manage interdependences and conflicts among other agents, so as to improve the flexibility, adaptability, and robustness of the global control system. Due to the existence of the simulation demand of dynamic performance, the vehicle multi-body dynamics model is established by SIMPACK. And then the co-simulation analysis is conducted to evaluate the proposed multi-agent system(MAS) controller. The simulation results demonstrate that the MAS has good effect on the performance of EPS and ASS. Meantime, the better road feeling for the driver is provided considering the multiple and complex driving traffic. Finally, the MAS rapid control prototyping is built to conduct the real vehicle test. The test results are consistent to the simulation results, which verifies the correctness of simulation. The proposed research ensures the driving safety, enhances the handling stability, and improves the ride comfort. 展开更多
关键词 TIRE STEER SUSPENSION MULTI-AGENT vehicle dynamics
下载PDF
High-speed tracked vehicle model order reduction for static and dynamic simulations
4
作者 Luca Dimauro Simone Venturini +2 位作者 Antonio Tota Enrico Galvagno Mauro Velardocchia 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第8期89-110,共22页
In this paper, a model order reduction strategy is adopted for the static and dynamic behaviour simulation of a high-speed tracked vehicle. The total number of degree of freedom of the structure is condensed through a... In this paper, a model order reduction strategy is adopted for the static and dynamic behaviour simulation of a high-speed tracked vehicle. The total number of degree of freedom of the structure is condensed through a selection of interface degrees of freedom and significant global mode shapes, for an approximated description of vehicle dynamic behaviour. The methodology is implemented in a customised open-source software to reduce the computational efforts. The modelled tracked vehicle includes the sprung mass, the unsprung masses, connected by means of torsional bars, and all the track assemblies, composing the track chain. The proposed research activity presents a comprehensive investigation of the influence of the track chain, combined with longitudinal vehicle speed, on statics and vehicle dynamics, focusing on vertical dynamics. The vehicle response has been investigated both in frequency and time domain. In this last case road-wheel displacements are assumed as inputs for the model, under different working conditions, hence considering several road profiles with different amplitudes and characteristic excitation frequencies. Simulation results have proven a high fidelity in model order reduction approach and a significant contribution of the track chain in the global dynamic behaviour of the tracked vehicle. 展开更多
关键词 Tracked vehicle dynamics Rubber characteristics Component mode synthesis Modal analysis OPEN-SOURCE
下载PDF
Integrated Active Suspension and Anti-Lock Braking Control for Four-Wheel-Independent-Drive Electric Vehicles
5
作者 Ze Zhao Lei Zhang +3 位作者 Xiaoling Ding Zhiqiang Zhang Shaohua Li Liang Gu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第1期87-98,共12页
This paper presents an integrated control scheme for enhancing the ride comfort and handling performance of a four-wheel-independent-drive electric vehicle through the coordination of active suspension system(ASS)and ... This paper presents an integrated control scheme for enhancing the ride comfort and handling performance of a four-wheel-independent-drive electric vehicle through the coordination of active suspension system(ASS)and anti-lock braking system(ABS).First,a longitudinal-vertical coupled vehicle dynamics model is established by integrating a road input model.Then the coupling mechanisms between longitudinal and vertical vehicle dynamics are analyzed.An ASS-ABS integrated control system is proposed,utilizing an H∞controller for ASS to optimize load transfer effect and a neural network sliding mode control for ABS implementation.Finally,the effectiveness of the proposed control scheme is evaluated through comprehensive tests conducted on a hardware-in-loop(HIL)test platform.The HIL test results demonstrate that the proposed control scheme can significantly improve the braking performance and ride comfort compared to conventional ABS control methods. 展开更多
关键词 Four-wheel-independent-drive electric vehicles Active suspension system(ASS) Anti-lock braking system(ABS) Vertical-longitudinal vehicle dynamics
下载PDF
Research on the evolution law of dynamic performance of CR400BF EMU train based on stochastic dynamics simulation
6
作者 Di Cheng Yuqing Wen +3 位作者 Zhiqiang Guo Xiaoyi Hu Pengsong Wang Zhikun Song 《Railway Sciences》 2024年第2期143-155,共13页
Purpose–This paper aims to obtain the evolution law of dynamic performance of CR400BF electric multiple unit(EMU).Design/methodology/approach–Using the dynamic simulation based on field test,stiffness of rotary arm ... Purpose–This paper aims to obtain the evolution law of dynamic performance of CR400BF electric multiple unit(EMU).Design/methodology/approach–Using the dynamic simulation based on field test,stiffness of rotary arm nodes and damping coefficient of anti-hunting dampers were tested.Stiffness,damping coefficient,friction coefficient,track gauge were taken as random variables,the stochastic dynamics simulation method was constructed and applied to research the evolution law with running mileage of dynamic index of CR400BF EMU.Findings–The results showed that stiffness and damping coefficient subjected to normal distribution,the mean and variance were computed and the evolution law of stiffness and damping coefficient with running mileage was obtained.Originality/value–Firstly,based on the field test we found that stiffness of rotary arm nodes and damping coefficient of anti-hunting dampers subjected to normal distribution,and the evolution law of stiffness and damping coefficient with running mileage was proposed.Secondly stiffness,damping coefficient,friction coefficient,track gauge were taken as random variables,the stochastic dynamics simulation method was constructed and applied to the research to the evolution law with running mileage of dynamic index of CR400BF EMU. 展开更多
关键词 vehicle system dynamics Stiffness of rotary arm nodes Anti-snaking damper damping Random variable
下载PDF
Development and Validation of a Scaled Electric Combat Vehicle Tire Model
7
作者 Haniyeh Fathi Aricha Mehrotra Zeinab El-Sayegh 《World Journal of Engineering and Technology》 2024年第1期24-39,共16页
Pneumatic tire modeling and validation have been the topic of several research papers, however, most of these papers only deal with pneumatic passenger and truck tires. In recent years, wheeled-scaled vehicles have ga... Pneumatic tire modeling and validation have been the topic of several research papers, however, most of these papers only deal with pneumatic passenger and truck tires. In recent years, wheeled-scaled vehicles have gained lots of attention as a feasible testing platform, nonetheless up to the authors’ knowledge there has been no research regarding the use of scaled tires and their effect on the overall vehicle performance characteristics. This paper presents a novel scaled electric combat vehicle tire model and validation technique. The pro-line lockdown tire size 3.00 × 7.35 is modeled using the Finite Element Analysis (FEA) technique and several materials including layered membrane, beam elements, and Mooney-Rivlin for rubber. The tire-rim assembly is then described, and the rigid body analysis is presented. The tire is then validated using an in-house custom-made static tire testing machine. The tire test rig is made specifically to test the pro-line tire model and is designed and manufactured in the laboratory. The tire is validated using vertical stiffness and footprint tests in the static domain at different operating conditions including several vertical loads. Then the tire is used to perform rolling resistance and steering analysis including the rolling resistance coefficient and the cornering stiffness. The analysis is performed at different operating conditions including longitudinal speeds of 5, 10, and 15 km/h. This tire model will be further used to determine the tractive and braking performance of the tire. Furthermore, the tire test rig will also be modified to perform cornering stiffness tests. 展开更多
关键词 Tire Modeling Tire Testing Machine vehicle dynamics Unmanned vehicle Modeling Finite Element Analysis Tire Mechanics
下载PDF
Quantification of the Vertical Load Applied to the Pavement during Cornering Maneuver of a Battery Electric Commercial Vehicle
8
作者 Pablo Kubo Ney Siqueira +3 位作者 Gilberto Grossl Luis Welin Mairon Dobicz Marcio Andrade 《Journal of Traffic and Transportation Engineering》 2024年第5期207-213,共7页
The wheel loads of heavy trucks are the major source of pavement damage,given the repeated loadings imposed by them due to transient events and surface irregularities.While related studies focus on steady-state contex... The wheel loads of heavy trucks are the major source of pavement damage,given the repeated loadings imposed by them due to transient events and surface irregularities.While related studies focus on steady-state context regarding simplified vehicle’s parameters and ideal pavement conditions,this paper aims to analyze the vertical load applied to the pavement by considering cornering maneuver as a transient event,on a battery electric vehicle truck.In this concern,measurements were performed on a rigid truck,with two steering front axles,in a closed course proving ground.The relationship has been presented between vehicle’s speed,lateral acceleration and transferred vertical load for a given curve radius of 85.6 m and 3.7°of transversal slope.The measurements results indicated that for every 10 km/h increasing on the vehicle’s speed,additional 110 kgf will be transferred to the pavement on the outer side of the cornering radius.This value itself could not be considered high,but it will be also added to the static load,or overload in some truck applications. 展开更多
关键词 Load transfer DURABILITY vehicle dynamics
下载PDF
OPENING NEW HORIZONS FOR VEHICLE SYSTEM DYNAMICS
9
作者 Shen Zhiyun(Southwest Jiaotong University in Chengdu, Sichuan Province) 《Bulletin of the Chinese Academy of Sciences》 1995年第3期274-275,共2页
The non-linear wheel-rail motional model is the first research breakthrough I have made in the field of vehicle system dynamics. The main external interference to a vehicle system in rail-borne transportation comes fr... The non-linear wheel-rail motional model is the first research breakthrough I have made in the field of vehicle system dynamics. The main external interference to a vehicle system in rail-borne transportation comes from the dynamic interaction between the wheel and the rail. To determine the forces exerted on the rail-contacting patches of a railcar is known to be one of the most complicated problems in rail haulage, expecially in its unsaturated state, i.e. before overall sliding occurs. Since the 1960s, many scholars, including K.L. Johnson and J.J.Kalker, have considered it a problem in rolling contact mechanics. However, none of the presented 展开更多
关键词 WORK OPENING NEW HORIZONS FOR vehicle system dynamics HIGH
下载PDF
Rolling horizon scheduling algorithm for dynamic vehicle scheduling system 被引量:1
10
作者 贾永基 谷寒雨 席裕庚 《Journal of Southeast University(English Edition)》 EI CAS 2005年第1期92-96,共5页
Dynamic exclusive pickup and delivery problem with time windows (DE-PDPTW), aspecial dynamic vehicle scheduling problem, is proposed. Its mathematical description is given andits static properties are analyzed, and th... Dynamic exclusive pickup and delivery problem with time windows (DE-PDPTW), aspecial dynamic vehicle scheduling problem, is proposed. Its mathematical description is given andits static properties are analyzed, and then the problem is simplified asthe asymmetrical travelingsalesman problem with time windows. The rolling horizon scheduling algorithm (RHSA) to solve thisdynamic problem is proposed. By the rolling of time horizon, the RHSA can adapt to the problem'sdynamic change and reduce the computation time by dealing with only part of the customers in eachrolling time horizon. Then, its three factors, the current customer window, the scheduling of thecurrent customer window and the rolling strategy, are analyzed. The test results demonstrate theeffectiveness of the RHSA to solve the dynamic vehicle scheduling problem. 展开更多
关键词 dynamic vehicle scheduling rolling horizon scheduling algorithm EXCLUSIVE pickup and delivery problem with time windows (PDPTW)
下载PDF
Mathematical Models of Tire-Lateral Road Adhesion for Use in Road Vehicle Dynamics Studies 被引量:1
11
作者 刘昭度 《Journal of Beijing Institute of Technology》 EI CAS 1997年第1期92-99,共8页
Mathematical models of tire-lateral mad adhesion for use in mad vehicle dynamics studies are set up to express the relations of adhesion coefficients with slip ratio in lateral direction.The models of tire-lateral mad... Mathematical models of tire-lateral mad adhesion for use in mad vehicle dynamics studies are set up to express the relations of adhesion coefficients with slip ratio in lateral direction.The models of tire-lateral mad adhesion revolutionize the Pacejka's model in concept and therefore make it possible for applications in vehicle dynamics studies by the expression of lateral adhesion coefficient as a function of wheel slip ratio,instead of the wheel slip angle,taking into account in the mean time the influences of mad surface condition, vehicle velocity,vertical load,tire slip angle,and wheel camber angle. 展开更多
关键词 mathematical model tire-lateral road adhesion coefficient vehicle dynamics
下载PDF
Effect of rail corrugation on vertical dynamics of railway vehicle coupled with a track 被引量:11
12
作者 XuesongJin KaiyunWang ZefengWen WeihuaZhang 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2005年第1期95-102,共8页
The effect of rail corrugation on the vertical dynamics of railway vehicle coupled with a curved track is investigated in detail with a numerical method when a wheelset is steadily curving. In the calculation of rail ... The effect of rail corrugation on the vertical dynamics of railway vehicle coupled with a curved track is investigated in detail with a numerical method when a wheelset is steadily curving. In the calculation of rail corrugation we consider the combination of Kalkers rolling contact theory modified, a model of material loss on rail running surface, and a dynamics model of railway vehicle coupled with a curved track. In the establishment of the dynamic model, for simplicity, one fourth of the freight car without lateral motions, namely a wheelset and the equivalent one fourth freight car body above it, is considered. The Euler beam is used to model the rails and the track structure under the rails is replaced with equivalent springs, dampers and mass bodies. The numerical results show the great influence of the rail corrugation on the vibration of the parts of the vehicle and the track, and the some characters of rail corrugation in development. 展开更多
关键词 rail corrugation TRACK VIBRATION rolling contact frictional work vehicle dynamics
下载PDF
Real-time Tire Parameters Observer for Vehicle Dynamics Stability Control 被引量:10
13
作者 LI Liang LI Hongzhi ZHANG Xiaolong HE Lin SONG Jian 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2010年第5期620-626,共7页
The performance of the vehicle dynamics stability control system(DSC) is dominated by the accurate estimation of tire forces in real-time.The characteristics of tire forces are determined by tire dynamic states and ... The performance of the vehicle dynamics stability control system(DSC) is dominated by the accurate estimation of tire forces in real-time.The characteristics of tire forces are determined by tire dynamic states and parameters,which vary in an obviously large scope along with different working conditions.Currently,there have been many methods based on the nonlinear observer to estimate the tire force and dynamic parameters,but they were only used in off-line analysis because of the computation complexity and the dynamics differences of four tires in the steering maneuver conditions were not considered properly.This paper develops a novel algorithm to observe tire parameters in real-time controller for DSC.The algorithm is based on the sensor-fusion technology with the signals of DSC sensors,and the tire parameters are estimated during a set of maneuver courses.The calibrated tire parameters in the control cycle are treated as the elementary states for vehicle dynamics observation,in which the errors between the calculated and the measured vehicle dynamics are used as the correcting factors for the tire parameter observing process.The test process with a given acceleration following a straight line is used to validate the estimation method of the longitudinal stiffness;while the test process with a given steering angle is used to validate the estimated value of the cornering stiffness.The ground test result shows that the proposed algorithm can estimate the tire stiffness accurately with an acceptable computation cost for real-time controller only using DSC sensor signal.The proposed algorithm can be an efficient algorithm for estimating the tire dynamic parameters in vehicle dynamics stability control system,and can be used to improve the robustness of the DSC controller. 展开更多
关键词 TIRE longitudinal stiffness cornering stiffness vehicle dynamics stability
下载PDF
Vehicle Dynamics Modeling and Simulation for ACC 被引量:3
14
作者 李径亮 刘昭度 李志远 《Journal of Beijing Institute of Technology》 EI CAS 2010年第1期53-57,共5页
A 7 degree-of-freedom (DOF) 4 wheels vehicle dynamics model based on Matlab-Simulink is established,and 7 DOF vehicle dynamics equations in the form of nonlinear state-space standards are given.The characters of the... A 7 degree-of-freedom (DOF) 4 wheels vehicle dynamics model based on Matlab-Simulink is established,and 7 DOF vehicle dynamics equations in the form of nonlinear state-space standards are given.The characters of the electronic throttle and the active braking system have been analyzed.And the electronic throttle model and the active braking system model are built according to the test results respectively.Off-line simulation results indicate that the model is suitable for the vehicle adaptive cruise control system,and both of the electronic throttle and the active braking system work in a reasonable way.An adaptive cruise control (ACC) example illustrates that the model has a good performance in cruise and distance keeping. 展开更多
关键词 vehicle dynamics MODELING SIMULATION adaptive cruise control (ACC)
下载PDF
Optimization of suspension system of heavy off-road vehicle for stability enhancement using integrated anti-roll bar and coiling spring mechanism 被引量:3
15
作者 Ilgar JAVANSHIR Andino MASELENO +1 位作者 Shahin TASOUJIAN Majid OVEISI 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第9期2289-2298,共10页
Short suspension system has an indispensable effect on vehicle handling and ride,so,optimization of vehicle suspension system is one of the most effective methods,which could considerably enhance the vehicle stability... Short suspension system has an indispensable effect on vehicle handling and ride,so,optimization of vehicle suspension system is one of the most effective methods,which could considerably enhance the vehicle stability and controllability.Motion control,stability maintenance and ride comfort improvement are fundamental issues in design of suspension system of off-road vehicles.In this work,a dependent suspension system mostly used in off-road vehicles is modeled using Trucksim software.Then,geometric parameters of suspension system are optimized using integrated anti-roll bar and coiling spring in a way that ride comfort,handling and stability of vehicle are improved.The simulation results of suspension system and variations of geometric parameters due to road roughness and different steering angles are presented in Trucksim and effects of optimization of suspension system during various driving maneuvers in both optimized and un-optimized conditions are compared.The simulation results indicate that the type of suspension system and geometric parameters have significant effect on vehicle performance. 展开更多
关键词 off-road vehicles HANDLING anti-roll bar coil spring vehicle lateral dynamic Trucksim software
下载PDF
A Novel Pre-control Method of Vehicle Dynamics Stability Based on Critical Stable Velocity during Transient Steering Maneuvering 被引量:9
16
作者 CHEN Jie SONG Jian +3 位作者 LI Liang RAN Xu JIA Gang WU Kaihui 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2016年第3期475-485,共11页
The current research of direct yaw moment control(DYC) system focus on the design of target yaw moment and the distribution of wheel brake force. The differential braking intervention can effectively improve the lat... The current research of direct yaw moment control(DYC) system focus on the design of target yaw moment and the distribution of wheel brake force. The differential braking intervention can effectively improve the lateral stability of the vehicle, however, the effect of DYC can be improved a step further by applying the control of vehicle longitudinal velocity. In this paper, the relationship between the vehicle longitudinal velocity and lateral stability is studied, and the simulation results show that a decrease of 5 km/h of longitudinal velocity at a particular situation can bring 100° increasing of stable steering upper limit. A critical stable velocity considering the effect of steering and yaw rate measurement is defined to evaluate the risk of losing steer-ability or stability. A novel velocity pre-control method is proposed by using a hierarchical pre-control logic and is integrated with the traditional DYC system. The control algorithm is verified through a hardware in-the-loop simulation system. Double lane change(DLC) test results on both high friction coefficient(μ) and low μ roads show that by using the pre-control method, the steering effort in DLC test can be reduced by 38% and 51% and the peak value of brake pressure control can be reduced by 20% and 12% respectively on high μ and low μ roads, the lateral stability is also improved. This research proposes a novel DYC system with lighter control effort and better control effect. 展开更多
关键词 vehicle dynamics direct yaw moment control critical stable velocity pre-control
下载PDF
Dynamics Modeling and Simulation of Autonomous Underwater Vehicles with Appendages 被引量:3
17
作者 Yumin Su Jinxin Zhao Jian Cao Guocheng Zhang 《Journal of Marine Science and Application》 2013年第1期45-51,共7页
To provide a simulation system platform for designing and debugging a small autonomous underwater vehicle's (AUV) motion controller, a six-degree of freedom (6-DOF) dynamic model for AUV controlled by thruster an... To provide a simulation system platform for designing and debugging a small autonomous underwater vehicle's (AUV) motion controller, a six-degree of freedom (6-DOF) dynamic model for AUV controlled by thruster and fins with appendages is examined. Based on the dynamic model, a simulation system for the AUV's motion is established. The different kinds of typical motions are simulated to analyze the motion performance and the maneuverability of the AUV. In order to evaluate the influences of appendages on the motion performance of the AUV, simulations of the AUV with and without appendages are performed and compared. The results demonstrate the AUV has good maneuverability with and without appendages. 展开更多
关键词 autonomous underwater vehicle (AUV) motion performance dynamics modeling appendages simulation system
下载PDF
Dynamics analysis of planar armored cable motion in deep-sea ROV system 被引量:3
18
作者 全伟才 张竺英 张艾群 《Journal of Central South University》 SCIE EI CAS 2014年第12期4456-4467,共12页
The armored cable used in a deep-sea remotely operated vehicle(ROV) may undergo large displacement motion when subjected to dynamic actions of ship heave motion and ocean current. A novel geometrically exact finite el... The armored cable used in a deep-sea remotely operated vehicle(ROV) may undergo large displacement motion when subjected to dynamic actions of ship heave motion and ocean current. A novel geometrically exact finite element model for two-dimensional dynamic analysis of armored cable is presented. This model accounts for the geometric nonlinearities of large displacement of the armored cable, and effects of axial load and bending stiffness. The governing equations are derived by consistent linearization and finite element discretization of the total weak form of the armored cable system, and solved by the Newmark time integration method. To make the solution procedure avoid falling into the local extreme points, a simple adaptive stepping strategy is proposed. The presented model is validated via actual measured data. Results for dynamic configurations, motion and tension of both ends of the armored cable, and resonance-zone are presented for two numerical cases, including the dynamic analysis under the case of only ship heave motion and the case of joint action of ship heave motion and ocean current. The dynamics analysis can provide important reference for the design or product selection of the armored cable in a deep-sea ROV system so as to improve the safety of its marine operation under the sea state of 4 or above. 展开更多
关键词 armored cable cable dynamics deep-sea remotely operated vehicle(ROV) resonance-zone geometrically exact model Newmark method
下载PDF
A strategy for lightweight designing of a railway vehicle car body including composite material and dynamic structural optimization 被引量:2
19
作者 Alessio Cascino Enrico Meli Andrea Rindi 《Railway Engineering Science》 2023年第4期340-350,共11页
Rolling stock manufacturers are finding structural solutions to reduce power required by the vehicles,and the lightweight design of the car body represents a possible solution.Optimization processes and innovative mat... Rolling stock manufacturers are finding structural solutions to reduce power required by the vehicles,and the lightweight design of the car body represents a possible solution.Optimization processes and innovative materials can be combined in order to achieve this goal.In this framework,we propose the redesign and optimization process of the car body roof for a light rail vehicle,introducing a sandwich structure.Bonded joint was used as a fastening system.The project was carried out on a single car of a modern tram platform.This preliminary numerical work was developed in two main steps:redesign of the car body structure and optimization of the innovated system.Objective of the process was the mass reduction of the whole metallic structure,while the constraint condition was imposed on the first frequency of vibration of the system.The effect of introducing a sandwich panel within the roof assembly was evaluated,focusing on the mechanical and dynamic performances of the whole car body.A mass saving of 63%on the optimized components was achieved,corresponding to a 7.6%if compared to the complete car body shell.In addition,a positive increasing of 17.7%on the first frequency of vibration was observed.Encouraging results have been achieved in terms of weight reduction and mechanical behaviour of the innovated car body. 展开更多
关键词 Structural dynamic optimization Car body lightweight design Railway vehicle dynamics Railway car body engineering Railway vehicle design Composite materials
下载PDF
Dynamic interactions of an integrated vehicle–electromagnetic energy harvester–tire system subject to uneven road excitations
20
作者 Jing Tang Xing Zhe Sun +1 位作者 Sulian Zhou Mingyi Tan 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2017年第2期440-456,共17页
An investigation is undertaken of an integrated mechanical-electromagnetic coupling system consisting of a rigid vehicle with heave, roll, and pitch motions, four electromagnetic energy harvesters and four tires subje... An investigation is undertaken of an integrated mechanical-electromagnetic coupling system consisting of a rigid vehicle with heave, roll, and pitch motions, four electromagnetic energy harvesters and four tires subject to uneven road excitations in order to improve the passengers' riding comfort and harvest the lost engine energy due to uneven roads. Following the derived mathematical formulations and the proposed solution approaches, the numerical simulations of this interaction system subject to a continuous sinusoidal road excitation and a single ramp impact are completed. The simulation results are presented as the dynamic response curves in the forms of the frequency spectrum and the time history, which reveals the complex interaction characteristics of the system for vibration reductions and energy harvesting performance. It has addressed the coupling effects on the dynamic characteristics of the integrated system caused by: (1) the natural modes and frequencies of the vehicle; (2) the vehicle rolling and pitching motions; (3) different road excitations on four wheels; (4) the time delay of a road ramp to impact both the front and rear wheels, etc., which cannot be tackled by an often used quarter vehicle model. The guidelines for engineering applications are given. The developed coupling model and the revealed concept provide a means with analysis idea to investigate the details of four energy harvester motions for electromagnetic suspension designs in order to replace the current passive vehicle isolators and to harvest the lost engine energy. Potential further research directions are suggested for readers to consider in the future. 展开更多
关键词 Vibration-energy-harvesters Electromagnetic suspensions Mechanical electromagnetic interactions vehicle dynamics Vibration isolations
下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部