A 7 degree-of-freedom (DOF) 4 wheels vehicle dynamics model based on Matlab-Simulink is established,and 7 DOF vehicle dynamics equations in the form of nonlinear state-space standards are given.The characters of the...A 7 degree-of-freedom (DOF) 4 wheels vehicle dynamics model based on Matlab-Simulink is established,and 7 DOF vehicle dynamics equations in the form of nonlinear state-space standards are given.The characters of the electronic throttle and the active braking system have been analyzed.And the electronic throttle model and the active braking system model are built according to the test results respectively.Off-line simulation results indicate that the model is suitable for the vehicle adaptive cruise control system,and both of the electronic throttle and the active braking system work in a reasonable way.An adaptive cruise control (ACC) example illustrates that the model has a good performance in cruise and distance keeping.展开更多
A dynamic model of a remotely operated vehicle(ROV)is developed.The hydrodynamic damping coefficients are estimated using a semi-predictive approach and computational fluid dynamic software ANSYS-CFX?and WAMIT?.A slid...A dynamic model of a remotely operated vehicle(ROV)is developed.The hydrodynamic damping coefficients are estimated using a semi-predictive approach and computational fluid dynamic software ANSYS-CFX?and WAMIT?.A sliding-mode controller(SMC)is then designed for the ROV model.The controller is subsequently robustified against modeling uncertainties,disturbances,and measurement errors.It is shown that when the system is subjected to bounded uncertainties,the SMC will preserve stability and tracking response.The paper ends with simulation results for a variety of conditions such as disturbances and parametric uncertainties.展开更多
New energy vehicles have better clean and environmental protection characteristics than traditional fuel vehicles.The new energy engine cooling technology is critical in the design of new energy vehicles.This paper us...New energy vehicles have better clean and environmental protection characteristics than traditional fuel vehicles.The new energy engine cooling technology is critical in the design of new energy vehicles.This paper used oneand three-way joint simulation methods to simulate the refrigeration system of new energy vehicles.Firstly,a k-εturbulent flow model for the cooling pump flow field is established based on the principle of computational fluid dynamics.Then,the CFD commercial fluid analysis software FLUENT is used to simulate the flow field of the cooling pump under different inlet flow conditions.This paper proposes an optimization scheme for new energy vehicle engines’“boiling”phenomenon under high temperatures and long-time climbing conditions.The simulation results show that changing the radiator’s structure and adjusting the thermostat’s parameters can solve the problem of a“boiling pot.”The optimized new energy vehicle engine can maintain a better operating temperature range.The algorithm model can reference each cryogenic system component hardware selection and control strategy in the new energy vehicle’s engine.展开更多
The vibration caused by terrible road excitation affects the ride quality and safety of track vehicles. The vibration control of suspension systems is a very important factor for modern track vehicles. A fuzzy logic c...The vibration caused by terrible road excitation affects the ride quality and safety of track vehicles. The vibration control of suspension systems is a very important factor for modern track vehicles. A fuzzy logic control for suspension system of a track vehicle is presented. A mechanical model and a system of difft, rential equations of motion taking account of the mass of loading wheel are established. Then the fuzzy logic control is applied to control the vibration of suspension system of track vehicles for sine signal and random road surfaces. Numerical simulation shows that the maximum acceleration of suspension system can be reduced to 44 % of the original value for sine signal road surface, and the mean square root of acceleration of suspension system can be reduced to 21% for random road surface. Therefore, the proposed fuzzy logic control is an efficient method for the suspension systems of track vehicles.展开更多
The dynamic research of aircraft environmental control system (ECS) is an important step in the advanced ECS design process. Based on the thermodynamics theory, mathematical models for the dynamic performance simulati...The dynamic research of aircraft environmental control system (ECS) is an important step in the advanced ECS design process. Based on the thermodynamics theory, mathematical models for the dynamic performance simulating of aircraft ECS were set up and an ECS simulation toolbox (ECS_1.0) was created with MATLAB language. It consists of main component modules (ducts, valves, heat exchangers, compressor, turbine, etc.). An aircraft environmental control system computer model was developed to assist engineers with the design and development of ECS dynamic optimization. An example simulating an existing ECS was given which shows the satisfactory effects.展开更多
The basic"current"statistical model and adaptive Kalman filter algorithm can not track a weakly maneuvering target precisely,though it has good estimate accuracy for strongly maneuvering target.In order to s...The basic"current"statistical model and adaptive Kalman filter algorithm can not track a weakly maneuvering target precisely,though it has good estimate accuracy for strongly maneuvering target.In order to solve this problem,a novel nonlinear fuzzy membership function was presented to adjust the upper and lower limit of target acceleration adaptively,and then the validity of the new algorithm for feeblish maneuvering target was proved in theory.At last,the computer simulation experiments indicated that the new algorithm has a great advantage over the basic"current"statistical model and adaptive algorithm.展开更多
The paper introduced a special approach for diesel’s all-speed-governor modeling, which, in some cases, could solve the knotty problem frequently met in computer simulation of diesel propulsion system or diesel gener...The paper introduced a special approach for diesel’s all-speed-governor modeling, which, in some cases, could solve the knotty problem frequently met in computer simulation of diesel propulsion system or diesel generating set. Suppose that it is hard to get a control-oriented governor mathematical model when the general approaches, the analytical approach or the experimental approach, are applied, and that an open-loop step response of the diesel engine and its system is available by means of computer simulation, the critical three parameters of a governor mathematical model, the proportional gain K_p, integral time constant K_i, and derivative time constant K_d, can be determined by use of PID tuning method which are widely applied in industrial process control. This paper discussed the train of thought of the approach, precondition, procedure, several modifications of the classical PID model, and some points for attention. A couple of case studies were given to demonstrate the effectiveness of this approach.展开更多
A T-S fuzzy model with two rules is established to exactly describe the nonlinear uncertain heave dynamics of underwater vehicles with bounded heave speed.A single linear-matrix-inequality-based (LMI-based) state feed...A T-S fuzzy model with two rules is established to exactly describe the nonlinear uncertain heave dynamics of underwater vehicles with bounded heave speed.A single linear-matrix-inequality-based (LMI-based) state feedback controller is then synthesized to guarantee the global stability of the depth control system.Simulation results verify the effectiveness of the proposed approach in comparison with linear-quadratic regulator (LQR) method.Nonlinear disturbance observer is appended to the system when the underwater vehicles are affected by the gravity-buoyancy imbalance.The two-stage control method is effective to stabilize an uncertain system with both parameter uncertainties and external disturbances.展开更多
This paper mainly discusses the following problems: the important meaning and special function of simulation system; the definition, contents and relationship of system and system simulation science; the definition an...This paper mainly discusses the following problems: the important meaning and special function of simulation system; the definition, contents and relationship of system and system simulation science; the definition and technology of simulation system and its equipments; and systematic description and exploration in relation to the developing trend of system simulation science and simulation system technology.展开更多
Modeling human pilot control behavior aims to understand and describe how humans control aircrafts and devices,to provide a foundation for the study of the dynamic characteristics of the human-vehicle system.In the pr...Modeling human pilot control behavior aims to understand and describe how humans control aircrafts and devices,to provide a foundation for the study of the dynamic characteristics of the human-vehicle system.In the presence of aircraft failures,the human pilot has a control process of the refractory period,which may cause adverse aircraft-pilot couplings,and even lead to loss-of-control events.This refractory period will make the pilot emerge with time-varying and adaptive features.This paper investigates how pilot control behavior changes to adapt to the aircraft failure situation and develops a time-varying pilot model during the refractory period.Six aviation pilots performed a human-in-the-loop simulation experiment on a ground flight simulator to simulate the failure situations for a pitch-tracking task.To characterize the pilot’s time-varying response mechanism,a time-frequency-spectrum method was used to analyze the pilot control signal.Main innovations in the proposed model can be embodied in the description of the fuzziness,time-varying,and adaptation of the pilot for the failures in the refractory period.Based on fuzzy logic theory,the pilot’s judgment and identification of failures are described.The adaptation of manual control behavior to time-varying aircraft dynamics is depicted by adaptive model theory.Time-domain and time-frequency-spectrum analysis show that the simulation results of the pilot model are consistent with the human-in-the-loop experimental results.The model simulation evaluations are within the range of the experimental evaluation,which shows the rationality of the timevarying behavior model of the human pilot in a failure refractory period.The model has practical values for guiding the pilot to deal with abnormal conditions and predicting nonlinear aircraft-pilot couplings.展开更多
The Hierarchical Structure Fuzzy Logic Control (HSFLC) strategies of torque distribute for Parallel Hybrid Electric Vehicle (PHEV) in the mode of operation of the vehicle i. e. , acceleration, cruise, deceleration etc...The Hierarchical Structure Fuzzy Logic Control (HSFLC) strategies of torque distribute for Parallel Hybrid Electric Vehicle (PHEV) in the mode of operation of the vehicle i. e. , acceleration, cruise, deceleration etc. have been studied. Using secondly developed the hybrid vehicle simulation tool ADVISOR, the dynamic model of PHEV has been set up by MATLAB/SIMULINK. The engine, motor as well as the battery characteristics have been studied. Simulation results show that the proposed hierarchical structured fuzzy logic control strategy is effective over the entire operating range of the vehicle in terms of fuel economy. Based on the analyses of the simulation results and driver’s experiences, a fuzzy controller is designed and developed to control the torque distribution. The controller is evaluated via hardware-in-the-loop simulator (HILS). The results show that controller verify its value.展开更多
A scheme of fuzzy logic control for the suspension system of a tracked vehicle is presented. A mechanical model for the whole body of a tracked vehicle, which is totally a fifteen-degree-of-freedom system, is establis...A scheme of fuzzy logic control for the suspension system of a tracked vehicle is presented. A mechanical model for the whole body of a tracked vehicle, which is totally a fifteen-degree-of-freedom system, is established. The model includes the vertical motion, the pitch motion as well as the roll motion of the tracked vehicle. In contrast to most previous studies, the coupling effect among the vertical, the pitch and the roll motions of the suspension system of a tracked vehicle is considered simultaneously. The simulation of fuzzy logic control under road surface with random excitation shows that the acceleration, pitch angle and roll angle of suspension system can be efficiently controlled.展开更多
The design of a turbofan rotor speed control system, using model reference adaptive control(MRAC) method with input and output measurements, is discussed for the purpose of practical application. The nonlinear compe...The design of a turbofan rotor speed control system, using model reference adaptive control(MRAC) method with input and output measurements, is discussed for the purpose of practical application. The nonlinear compensator based on functional link neural network is used to deal with the engine nonlinearity and the hardware-in-loop simulation is also developed. The results show that the nonlinear MRAC controller has the adequate performance of compensating and adapting nonlinearity arising from the change of engine state or working environment. Such feature demonstrates potential practical applications of MRAC for aeroengine control system.展开更多
On the basis of analyzing the system constitution of vehicle semi-active suspension, a 4-DOF (degree of freedom) dynamic model is established. A tunable fuzzy logic controller is designed by using without quantificati...On the basis of analyzing the system constitution of vehicle semi-active suspension, a 4-DOF (degree of freedom) dynamic model is established. A tunable fuzzy logic controller is designed by using without quantification method and taking into account the uncertainty, nonlinearity and complexity of parameters for a vehicle suspension system. Simulation to test the performance of this controller is performed under random excitations and definite disturbances of a C grade road, and the effects of time delay and changes of system parameters on the vehicle suspension system are researched. The numerical simulation shows that the performance of the designed tunable fuzzy logic controller is effective, stable and reliable.展开更多
This paper investigates the problem of finite frequency fuzzy H_∞ control for uncertain active vehicle suspension systems, in which sensor failure is taken into account. TakagiSugeno(T-S) fuzzy model is established f...This paper investigates the problem of finite frequency fuzzy H_∞ control for uncertain active vehicle suspension systems, in which sensor failure is taken into account. TakagiSugeno(T-S) fuzzy model is established for considered suspension systems. In order to describe the sensor fault effectively, a corresponding model is introduced. A vital performance index,H_∞ performance, is utilized to measure the drive comfort. In the framework of Kalman-Yakubovich-Popov theory, the H_∞ norm from external perturbation to controlled output is optimized effectively in the frequency domain of 4 Hz-8 Hz to enhance ride comfort level. Meanwhile, three suspension constrained requirements, i.e., ride comfort level, manipulation stability,suspension deflection are also guaranteed. Furthermore, sufficient conditions are developed to design a fuzzy controller to guarantee the desired performance of active suspension systems. Finally, the proposed control scheme is applied to a quarter-vehicle active suspension, and simulation results are given to illustrate the effectiveness of the proposed approach.展开更多
In order to achieve an automatic leveling function for work platforms of aerial vehicles with mixed-booms( MAV) in full elevating domain,an auto-leveling mechanism for the platform is proposed based on a control metho...In order to achieve an automatic leveling function for work platforms of aerial vehicles with mixed-booms( MAV) in full elevating domain,an auto-leveling mechanism for the platform is proposed based on a control method of booms-constraint,where mixed-boom structures and elevating characteristics are considered. Three models of constraint strategies include non-constraint model,elevating constraint model and lowering constraint model,which is designed to meet the leveling requirements in full working extent. Through the hydro-mechatronic unified modeling,a virtual prototype model is set up based on the auto-leveling mechanism,and leveling performances of the platform are studied during booms elevating to the maximum working height and extent. Simulation results show that the control method of booms-constraint can realize auto-leveling of the platform under two typical working conditions,meanwhile a leveling deviation appears at the constrained point,but the platform inclination is adjusted in the permissible range. The control method does not only restrict booms' freedom elevating to a certain extent,but also impacts the booms extending to the maximum working range. Experimental results verify that the auto-leveling mechanism based on booms-constraint control is valid and rational,which provides an effective technology approach for development of the platform leveling of MAV.展开更多
The bucket wheel reclaimer(BWR) is a key piece of equipment which has been widely used for stacking and reclaiming bulk materials(i.e.iron ore and coal) in places such as ports,iron-steel plants,coal storage areas,and...The bucket wheel reclaimer(BWR) is a key piece of equipment which has been widely used for stacking and reclaiming bulk materials(i.e.iron ore and coal) in places such as ports,iron-steel plants,coal storage areas,and power stations from stockpiles.BWRs are very large in size,heavy in weight,expensive in price,and slow in motion.There are many challenges in attempting to automatically control their motion to accurately follow the required trajectories involving uncertain parameters from factors such as friction,turbulent wind,its own dynamics,and encoder limitations.As BWRs are always heavily engaged in production and cannot be spared very long for motion control studies and associated developments,a BWR model and simulation environment closely resembling real life conditions would be beneficial.The following research focused mainly on the implementation of fuzzy logic to a BWR motion control from an engineer's perspective.First,the modeling of a BWR including partially known parameters such as friction force and turbulence to the system was presented.This was then followed by the design of a fuzzy logic-based control built on a model-based control loop.The investigation provides engineers with an example of applying fuzzy logic in a model based approach to properly control the motion of a large BWR following defined trajectories,as well as to show possible ways of further improving the controller performance.The result indicates that fuzzy logic can be applied easily by engineers to overcome most motion control issues involving a large BWR.展开更多
A fuzzy neural network controller for underwater vehicles has many parameters difficult to tune manually. To reduce the numerous work and subjective uncertainties in manual adjustments, a hybrid particle swarm optimiz...A fuzzy neural network controller for underwater vehicles has many parameters difficult to tune manually. To reduce the numerous work and subjective uncertainties in manual adjustments, a hybrid particle swarm optimization (HPSO) algorithm based on immune theory and nonlinear decreasing inertia weight (NDIW) strategy is proposed. Owing to the restraint factor and NDIW strategy, an HPSO algorithm can effectively prevent premature convergence and keep balance between global and local searching abilities. Meanwhile, the algorithm maintains the ability of handling multimodal and multidimensional problems. The HPSO algorithm has the fastest convergence velocity and finds the best solutions compared to GA, IGA, and basic PSO algorithm in simulation experiments. Experimental results on the AUV simulation platform show that HPSO-based controllers perform well and have strong abilities against current disturbance. It can thus be concluded that the proposed algorithm is feasible for application to AUVs.展开更多
基金Sponsored by the National Natural Science Foundation of China (501222155)
文摘A 7 degree-of-freedom (DOF) 4 wheels vehicle dynamics model based on Matlab-Simulink is established,and 7 DOF vehicle dynamics equations in the form of nonlinear state-space standards are given.The characters of the electronic throttle and the active braking system have been analyzed.And the electronic throttle model and the active braking system model are built according to the test results respectively.Off-line simulation results indicate that the model is suitable for the vehicle adaptive cruise control system,and both of the electronic throttle and the active braking system work in a reasonable way.An adaptive cruise control (ACC) example illustrates that the model has a good performance in cruise and distance keeping.
文摘A dynamic model of a remotely operated vehicle(ROV)is developed.The hydrodynamic damping coefficients are estimated using a semi-predictive approach and computational fluid dynamic software ANSYS-CFX?and WAMIT?.A sliding-mode controller(SMC)is then designed for the ROV model.The controller is subsequently robustified against modeling uncertainties,disturbances,and measurement errors.It is shown that when the system is subjected to bounded uncertainties,the SMC will preserve stability and tracking response.The paper ends with simulation results for a variety of conditions such as disturbances and parametric uncertainties.
文摘New energy vehicles have better clean and environmental protection characteristics than traditional fuel vehicles.The new energy engine cooling technology is critical in the design of new energy vehicles.This paper used oneand three-way joint simulation methods to simulate the refrigeration system of new energy vehicles.Firstly,a k-εturbulent flow model for the cooling pump flow field is established based on the principle of computational fluid dynamics.Then,the CFD commercial fluid analysis software FLUENT is used to simulate the flow field of the cooling pump under different inlet flow conditions.This paper proposes an optimization scheme for new energy vehicle engines’“boiling”phenomenon under high temperatures and long-time climbing conditions.The simulation results show that changing the radiator’s structure and adjusting the thermostat’s parameters can solve the problem of a“boiling pot.”The optimized new energy vehicle engine can maintain a better operating temperature range.The algorithm model can reference each cryogenic system component hardware selection and control strategy in the new energy vehicle’s engine.
文摘The vibration caused by terrible road excitation affects the ride quality and safety of track vehicles. The vibration control of suspension systems is a very important factor for modern track vehicles. A fuzzy logic control for suspension system of a track vehicle is presented. A mechanical model and a system of difft, rential equations of motion taking account of the mass of loading wheel are established. Then the fuzzy logic control is applied to control the vibration of suspension system of track vehicles for sine signal and random road surfaces. Numerical simulation shows that the maximum acceleration of suspension system can be reduced to 44 % of the original value for sine signal road surface, and the mean square root of acceleration of suspension system can be reduced to 21% for random road surface. Therefore, the proposed fuzzy logic control is an efficient method for the suspension systems of track vehicles.
文摘The dynamic research of aircraft environmental control system (ECS) is an important step in the advanced ECS design process. Based on the thermodynamics theory, mathematical models for the dynamic performance simulating of aircraft ECS were set up and an ECS simulation toolbox (ECS_1.0) was created with MATLAB language. It consists of main component modules (ducts, valves, heat exchangers, compressor, turbine, etc.). An aircraft environmental control system computer model was developed to assist engineers with the design and development of ECS dynamic optimization. An example simulating an existing ECS was given which shows the satisfactory effects.
文摘The basic"current"statistical model and adaptive Kalman filter algorithm can not track a weakly maneuvering target precisely,though it has good estimate accuracy for strongly maneuvering target.In order to solve this problem,a novel nonlinear fuzzy membership function was presented to adjust the upper and lower limit of target acceleration adaptively,and then the validity of the new algorithm for feeblish maneuvering target was proved in theory.At last,the computer simulation experiments indicated that the new algorithm has a great advantage over the basic"current"statistical model and adaptive algorithm.
文摘The paper introduced a special approach for diesel’s all-speed-governor modeling, which, in some cases, could solve the knotty problem frequently met in computer simulation of diesel propulsion system or diesel generating set. Suppose that it is hard to get a control-oriented governor mathematical model when the general approaches, the analytical approach or the experimental approach, are applied, and that an open-loop step response of the diesel engine and its system is available by means of computer simulation, the critical three parameters of a governor mathematical model, the proportional gain K_p, integral time constant K_i, and derivative time constant K_d, can be determined by use of PID tuning method which are widely applied in industrial process control. This paper discussed the train of thought of the approach, precondition, procedure, several modifications of the classical PID model, and some points for attention. A couple of case studies were given to demonstrate the effectiveness of this approach.
文摘A T-S fuzzy model with two rules is established to exactly describe the nonlinear uncertain heave dynamics of underwater vehicles with bounded heave speed.A single linear-matrix-inequality-based (LMI-based) state feedback controller is then synthesized to guarantee the global stability of the depth control system.Simulation results verify the effectiveness of the proposed approach in comparison with linear-quadratic regulator (LQR) method.Nonlinear disturbance observer is appended to the system when the underwater vehicles are affected by the gravity-buoyancy imbalance.The two-stage control method is effective to stabilize an uncertain system with both parameter uncertainties and external disturbances.
文摘This paper mainly discusses the following problems: the important meaning and special function of simulation system; the definition, contents and relationship of system and system simulation science; the definition and technology of simulation system and its equipments; and systematic description and exploration in relation to the developing trend of system simulation science and simulation system technology.
基金supported by the China Postdoctoral Science Foundation(Grant No.2021M690288)the Aeronautical Science Foundation of China (Grant No.20185702003)。
文摘Modeling human pilot control behavior aims to understand and describe how humans control aircrafts and devices,to provide a foundation for the study of the dynamic characteristics of the human-vehicle system.In the presence of aircraft failures,the human pilot has a control process of the refractory period,which may cause adverse aircraft-pilot couplings,and even lead to loss-of-control events.This refractory period will make the pilot emerge with time-varying and adaptive features.This paper investigates how pilot control behavior changes to adapt to the aircraft failure situation and develops a time-varying pilot model during the refractory period.Six aviation pilots performed a human-in-the-loop simulation experiment on a ground flight simulator to simulate the failure situations for a pitch-tracking task.To characterize the pilot’s time-varying response mechanism,a time-frequency-spectrum method was used to analyze the pilot control signal.Main innovations in the proposed model can be embodied in the description of the fuzziness,time-varying,and adaptation of the pilot for the failures in the refractory period.Based on fuzzy logic theory,the pilot’s judgment and identification of failures are described.The adaptation of manual control behavior to time-varying aircraft dynamics is depicted by adaptive model theory.Time-domain and time-frequency-spectrum analysis show that the simulation results of the pilot model are consistent with the human-in-the-loop experimental results.The model simulation evaluations are within the range of the experimental evaluation,which shows the rationality of the timevarying behavior model of the human pilot in a failure refractory period.The model has practical values for guiding the pilot to deal with abnormal conditions and predicting nonlinear aircraft-pilot couplings.
基金the National High Technology Development of China to R & D EV Project(863-2001AA501213)
文摘The Hierarchical Structure Fuzzy Logic Control (HSFLC) strategies of torque distribute for Parallel Hybrid Electric Vehicle (PHEV) in the mode of operation of the vehicle i. e. , acceleration, cruise, deceleration etc. have been studied. Using secondly developed the hybrid vehicle simulation tool ADVISOR, the dynamic model of PHEV has been set up by MATLAB/SIMULINK. The engine, motor as well as the battery characteristics have been studied. Simulation results show that the proposed hierarchical structured fuzzy logic control strategy is effective over the entire operating range of the vehicle in terms of fuel economy. Based on the analyses of the simulation results and driver’s experiences, a fuzzy controller is designed and developed to control the torque distribution. The controller is evaluated via hardware-in-the-loop simulator (HILS). The results show that controller verify its value.
文摘A scheme of fuzzy logic control for the suspension system of a tracked vehicle is presented. A mechanical model for the whole body of a tracked vehicle, which is totally a fifteen-degree-of-freedom system, is established. The model includes the vertical motion, the pitch motion as well as the roll motion of the tracked vehicle. In contrast to most previous studies, the coupling effect among the vertical, the pitch and the roll motions of the suspension system of a tracked vehicle is considered simultaneously. The simulation of fuzzy logic control under road surface with random excitation shows that the acceleration, pitch angle and roll angle of suspension system can be efficiently controlled.
文摘The design of a turbofan rotor speed control system, using model reference adaptive control(MRAC) method with input and output measurements, is discussed for the purpose of practical application. The nonlinear compensator based on functional link neural network is used to deal with the engine nonlinearity and the hardware-in-loop simulation is also developed. The results show that the nonlinear MRAC controller has the adequate performance of compensating and adapting nonlinearity arising from the change of engine state or working environment. Such feature demonstrates potential practical applications of MRAC for aeroengine control system.
基金Funded by the National Natural Science Foundation of China (NO.50135030)
文摘On the basis of analyzing the system constitution of vehicle semi-active suspension, a 4-DOF (degree of freedom) dynamic model is established. A tunable fuzzy logic controller is designed by using without quantification method and taking into account the uncertainty, nonlinearity and complexity of parameters for a vehicle suspension system. Simulation to test the performance of this controller is performed under random excitations and definite disturbances of a C grade road, and the effects of time delay and changes of system parameters on the vehicle suspension system are researched. The numerical simulation shows that the performance of the designed tunable fuzzy logic controller is effective, stable and reliable.
基金partially supported by the National Natural Science Foundation of China(61622302,61673072,61573070)Guangdong Natural Science Funds for Distinguished Young Scholar(2017A030306014)+1 种基金the Department of Education of Guangdong Province(2016KTSCX030)the Department of Education of Liaoning Province(LZ2017001)
文摘This paper investigates the problem of finite frequency fuzzy H_∞ control for uncertain active vehicle suspension systems, in which sensor failure is taken into account. TakagiSugeno(T-S) fuzzy model is established for considered suspension systems. In order to describe the sensor fault effectively, a corresponding model is introduced. A vital performance index,H_∞ performance, is utilized to measure the drive comfort. In the framework of Kalman-Yakubovich-Popov theory, the H_∞ norm from external perturbation to controlled output is optimized effectively in the frequency domain of 4 Hz-8 Hz to enhance ride comfort level. Meanwhile, three suspension constrained requirements, i.e., ride comfort level, manipulation stability,suspension deflection are also guaranteed. Furthermore, sufficient conditions are developed to design a fuzzy controller to guarantee the desired performance of active suspension systems. Finally, the proposed control scheme is applied to a quarter-vehicle active suspension, and simulation results are given to illustrate the effectiveness of the proposed approach.
基金Supported by the National Natural Science Foundation of China(No.51509006)National Key Technology R&D Program(No.2015BAF07B08)Fundamental Research Funds for the Central Universities of Chang’an University(No.310825161008)
文摘In order to achieve an automatic leveling function for work platforms of aerial vehicles with mixed-booms( MAV) in full elevating domain,an auto-leveling mechanism for the platform is proposed based on a control method of booms-constraint,where mixed-boom structures and elevating characteristics are considered. Three models of constraint strategies include non-constraint model,elevating constraint model and lowering constraint model,which is designed to meet the leveling requirements in full working extent. Through the hydro-mechatronic unified modeling,a virtual prototype model is set up based on the auto-leveling mechanism,and leveling performances of the platform are studied during booms elevating to the maximum working height and extent. Simulation results show that the control method of booms-constraint can realize auto-leveling of the platform under two typical working conditions,meanwhile a leveling deviation appears at the constrained point,but the platform inclination is adjusted in the permissible range. The control method does not only restrict booms' freedom elevating to a certain extent,but also impacts the booms extending to the maximum working range. Experimental results verify that the auto-leveling mechanism based on booms-constraint control is valid and rational,which provides an effective technology approach for development of the platform leveling of MAV.
基金support through the ARC Linkage LP0989780 grant titled "The study anddevelopment of a 3-D real-time stockpile management system"the support in part from Institute for Mineral and Energy Resources,University of Adelaide 2009-2010,as well as Faculty of Engineering,Computer and Mathematical Sciences strategic research funding,2010
文摘The bucket wheel reclaimer(BWR) is a key piece of equipment which has been widely used for stacking and reclaiming bulk materials(i.e.iron ore and coal) in places such as ports,iron-steel plants,coal storage areas,and power stations from stockpiles.BWRs are very large in size,heavy in weight,expensive in price,and slow in motion.There are many challenges in attempting to automatically control their motion to accurately follow the required trajectories involving uncertain parameters from factors such as friction,turbulent wind,its own dynamics,and encoder limitations.As BWRs are always heavily engaged in production and cannot be spared very long for motion control studies and associated developments,a BWR model and simulation environment closely resembling real life conditions would be beneficial.The following research focused mainly on the implementation of fuzzy logic to a BWR motion control from an engineer's perspective.First,the modeling of a BWR including partially known parameters such as friction force and turbulence to the system was presented.This was then followed by the design of a fuzzy logic-based control built on a model-based control loop.The investigation provides engineers with an example of applying fuzzy logic in a model based approach to properly control the motion of a large BWR following defined trajectories,as well as to show possible ways of further improving the controller performance.The result indicates that fuzzy logic can be applied easily by engineers to overcome most motion control issues involving a large BWR.
基金the National Natural Science Foundation of China (No.50579007)
文摘A fuzzy neural network controller for underwater vehicles has many parameters difficult to tune manually. To reduce the numerous work and subjective uncertainties in manual adjustments, a hybrid particle swarm optimization (HPSO) algorithm based on immune theory and nonlinear decreasing inertia weight (NDIW) strategy is proposed. Owing to the restraint factor and NDIW strategy, an HPSO algorithm can effectively prevent premature convergence and keep balance between global and local searching abilities. Meanwhile, the algorithm maintains the ability of handling multimodal and multidimensional problems. The HPSO algorithm has the fastest convergence velocity and finds the best solutions compared to GA, IGA, and basic PSO algorithm in simulation experiments. Experimental results on the AUV simulation platform show that HPSO-based controllers perform well and have strong abilities against current disturbance. It can thus be concluded that the proposed algorithm is feasible for application to AUVs.