The detonation of an IED near a military vehicle induces different damage effects on the vehicle and its occupants. There are local effects from fragments and projectiles but there are also global effects from a momen...The detonation of an IED near a military vehicle induces different damage effects on the vehicle and its occupants. There are local effects from fragments and projectiles but there are also global effects from a momentum transfer on the complete vehicle structure and a subsequent dynamical motion of the vehicle with phenomena like overturning or vehicle displacement from the road.Questions like this can be answered with numerical finite-element simulations but there is also the need for engineering tools that allow a quick and nearly instantaneous simulation of these phenomena. The following work presents an approach for a fast analysis of global IED effects on vehicles. The physical modelling is based on analytical formula and empirical data that describe the momentum transfer of a detonation on a nearby structure. This momentum is the initial condition for the calculation of the following vehicle motion and the simulation of vehicle dynamics and jump height.The software itself has a modern GUI that allows the generation of the vehicle structure and the threat scenario together with an interactive analysis of the simulation results.The engineering tool is validated with small size generic vehicle tests where jump height and the vehicle motion are compared. The software allows a detailed analysis of global IED effects and can be additionally used in an inverse mode for the analysis of incidents with the determination of used HE masses in an IED attack.展开更多
基金TRDir K. Hüsing from the German test range WTD-91 GF-440 in MeppenTRDir K. Neugebauer from BAAINBw for funding this work
文摘The detonation of an IED near a military vehicle induces different damage effects on the vehicle and its occupants. There are local effects from fragments and projectiles but there are also global effects from a momentum transfer on the complete vehicle structure and a subsequent dynamical motion of the vehicle with phenomena like overturning or vehicle displacement from the road.Questions like this can be answered with numerical finite-element simulations but there is also the need for engineering tools that allow a quick and nearly instantaneous simulation of these phenomena. The following work presents an approach for a fast analysis of global IED effects on vehicles. The physical modelling is based on analytical formula and empirical data that describe the momentum transfer of a detonation on a nearby structure. This momentum is the initial condition for the calculation of the following vehicle motion and the simulation of vehicle dynamics and jump height.The software itself has a modern GUI that allows the generation of the vehicle structure and the threat scenario together with an interactive analysis of the simulation results.The engineering tool is validated with small size generic vehicle tests where jump height and the vehicle motion are compared. The software allows a detailed analysis of global IED effects and can be additionally used in an inverse mode for the analysis of incidents with the determination of used HE masses in an IED attack.