OVERVIEW China Academy of Launch Vehicle Technology (CALT) was founded on November 16, 1957. It was the first research unit devoted to the development of launch
Unmanned aerial vehicle technology was used to survey the vegetation coverage of typical urban-rural fringe, and descriptive statistics and geostatistical methods were used to analyze the urban-rural fringe of spatial...Unmanned aerial vehicle technology was used to survey the vegetation coverage of typical urban-rural fringe, and descriptive statistics and geostatistical methods were used to analyze the urban-rural fringe of spatial heterogeneity of vegetation coverage. The results showed that vegetation coverage in the study area was 27.2176% with the coefficient of variation of 31.7786%; that the vegetation coverage in separation distance of 〈0.18' showed positive spatial correlation, and the spatial correlation of vegetation coverage in separation distance of 〈0.18' was greater than that in 〉0.18'; that the best fitting model for Semivariance function was exponential model with spatial variation ratio 0.726, which showed strong spatial correlation, and the spatial correlated scale was 0.18'; that the vegetation coverage data in the study area was relatively stable, and the instability mainly occurred on the border of the study area and the surroundings.展开更多
Three types of low-carbon vehicle technologies in China are reviewed. Potential effects are listed for those integrated energy-saving technologies for conventional vehicles. Low carbon transitions, including alternati...Three types of low-carbon vehicle technologies in China are reviewed. Potential effects are listed for those integrated energy-saving technologies for conventional vehicles. Low carbon transitions, including alternative vehicle power train systems and fuels, are discussed on their development status and trends, including life cycle primary fossil energy use and greenhouse gas emissions of each pathway. To further support the low-carbon vehicle technologies development, integrated policies should seek to: (1) employ those integrated energy-saving technologies, (2) apply hybrid electric technology, (3) commercialize electric vehicles through battery technology innovation, (4) support fuel cell vehicles and hydrogen technology R&D for future potential applications, (5) boost the R&D of second generation biofuel technology, and (6) conduct further research on applying low-carbon technologies including CO2 capture and storage technology to coal-based transportation solutions.展开更多
In the automotive concept design stages, functionally positioning the newly introduced autonomous technologies or remodelling the vehicle accordingly and evaluating the steps or determining the workload together with ...In the automotive concept design stages, functionally positioning the newly introduced autonomous technologies or remodelling the vehicle accordingly and evaluating the steps or determining the workload together with the collaboration intensity in the current flow is the initial step for the entire process efficiency. Therefore, the main purpose of the research is to reveal the effects of the autonomous technologies, which are newly included in the automotive concept design stages in automotive manufacturing industry companies that continue their lives under heavy competition conditions, according to the order of importance. The objective of this research is to both increase the efficiency of automotive concept design stages and to determine the measurement of the effects of new autonomous vehicle technologies in practice. Under the AHP method used in the research, the automotive concept design stages constitute the alternatives in the order of importance of the working structure, as well as the application variables of autonomous vehicle technologies, the criteria of the mathematical model. In addition, the research method modelled in the study, under the AHP mathematical model, reveals the performances or order of importance of the automotive concept design stages under autonomous technologies. Therefore, the resulting process performances constitute important inputs for efficiency and optimization studies under different research approaches. When the results of the study are examined, due to the high level of influence on the new vehicle concept design performance in automotive industry companies, the adaptation or application steps of autonomous vehicle technologies create new needs in the whole process. The determination of innovation creation clusters in the design process steps or the selection of the density of new technology adaptation in the stages and the order of importance provide a competitive advantage along with optimization in the basic functions of the automotive industry companies. However, the determination of new workload clusters in the mentioned automotive concept design process steps or the effect of autonomous technologies in the design stages, selection, transfer from theory to practice, multiple conflicting criteria and uncertain parameters create a very complex situation. For all these reasons, the Analytical Hierarchy Process (AHP), which is one of the widely used multi-criteria decision-making tools, is considered as a suitable approach for creating such order of importance and solving problems. In this study, an AHP mathematical model was created that determines the workload clusters created by autonomous vehicle technology applications that have just begun to guide the automotive concept design process, which is the main function of automotive manufacturing industry companies. Therefore, in line with the innovations, changes and adequacy criteria created by the current automotive concept design stages in the new autonomous vehicle technology adaptation, a stage order of importance has been selected.展开更多
New road transportation systems solutions create significant changes in existing automotive manufacturing industry products and technologies, from design to use. The conveniences within the framework of new appro...New road transportation systems solutions create significant changes in existing automotive manufacturing industry products and technologies, from design to use. The conveniences within the framework of new approaches brought by autonomous vehicle technologies primarily make individuals transition from driver duty to passenger and high-comfort alternative travel technologies. Therefore, the research: defining the path followed by the autonomous vehicle technologies, which lead to the development of the said new life model and automotive products within the future fiction, in the stages of designing new concept vehicles in practice or measuring the effect on the processes constitute important values for the future prediction of this sector. In addition, the research has focused on the effects of interdisciplinary studies at the automotive concept design stages, which are at the beginning of today’s lean and new product development process, where innovation goals or technologies emerge with more concrete needs. New autonomous vehicle technologies and the main purpose of revealing the interdisciplinary studies created by new disciplines in the current automotive concept design stages make significant contributions to the optimization of the lean product development process and value creation. For this reason, the automotive manufacturing industry, which is on the eve of a major transformation with the said new autonomous vehicle technologies;determining the needs or sustainable position in the flow of digital perception and orientation systems;determining value creation criteria related to the functioning of automotive concept design processes or new acceptance criteria through one-on-one interviews in the field;constitutes the focus of the research. The research has examined the new interdisciplinary studies and effects of new autonomous vehicle technologies in the automotive concept design phase, which is the first step of lean product development, with local and global automotive industry company comparisons in operation. Therefore, the differences and similarities between the concept design stages of global automotive companies that are both co-developers of new autonomous vehicle technologies and manufacturing automotive products and local automotive manufacturing companies that only assemble them determine the future competitive structuring of the industry.展开更多
Addressing transportation planning, operation and investment challenges requires increasingly sophisticated data and information management strategies. ITS (intelligent transportation systems) and CV (connected veh...Addressing transportation planning, operation and investment challenges requires increasingly sophisticated data and information management strategies. ITS (intelligent transportation systems) and CV (connected vehicle) technologies represent a new approach to capturing and using needed transportation data in real time or near real time. In the case of Michigan, several ITS programs have been launched successfully, but independently of each other. The objective of this research is to evaluate and assess all important factors that will influence the collection, management and use of ITS data, and recommend strategies to develop integrated, dynamic and adaptive data management systems for state transportation agencies.展开更多
Countries have invested considerable sums of human capital and material resources in the practical application of self-driving cars demonstrating the impressive market opportunity.In light of this trend,Taiwan does no...Countries have invested considerable sums of human capital and material resources in the practical application of self-driving cars demonstrating the impressive market opportunity.In light of this trend,Taiwan does not want to fall behind either.As on-road testing and technological development for self-driving cars continue to develop in different countries,the controversial issues of safety,ethics,liability,and the invasion of privacy continue to emerge.In order to resolve these issues,the government of Taiwan seeks to provide a good environment for AI(artificial intelligence)innovation and applications.This article summarizes and highlights relevant content and key points of Unmanned Vehicles Technology Innovative Experimentation Act,which was legislated in Taiwan in 2018.In addition,it points out the fundamental ethics regulation of AI,which has influenced Taiwan legal policy.展开更多
The robust controller design problem for switched polytopic systems under asynchronous switching is addressed.These systems exist in many aviation applications, such as dynamical systems involving rapid variations.A s...The robust controller design problem for switched polytopic systems under asynchronous switching is addressed.These systems exist in many aviation applications, such as dynamical systems involving rapid variations.A switched polytopic system is established to describe the highly maneuverable technology vehicle within the full flight envelope and a robust dynamic output feedback control method is designed for the switched polytopic system.Combining the Lyapunov-like function method and the average dwell time method, a sufficient condition is derived for the switched polytopic system with asynchronous switching and data dropout to be globally,uniformly and asymptotically stable in terms of linear matrix inequality.The robust dynamic output feedback controller is then applied to the highly maneuverable technology vehicle to illustrate the effectiveness of the proposed approach.The simulation results show that the angle of attack tracking performance is acceptable over the time history and the control surface responses are all satisfying along the full flight trajectory.展开更多
文摘OVERVIEW China Academy of Launch Vehicle Technology (CALT) was founded on November 16, 1957. It was the first research unit devoted to the development of launch
基金Supported by the Special Fund for the Cultivation of Outstanding Young Scientific and Technological Talents(2015-2018)~~
文摘Unmanned aerial vehicle technology was used to survey the vegetation coverage of typical urban-rural fringe, and descriptive statistics and geostatistical methods were used to analyze the urban-rural fringe of spatial heterogeneity of vegetation coverage. The results showed that vegetation coverage in the study area was 27.2176% with the coefficient of variation of 31.7786%; that the vegetation coverage in separation distance of 〈0.18' showed positive spatial correlation, and the spatial correlation of vegetation coverage in separation distance of 〈0.18' was greater than that in 〉0.18'; that the best fitting model for Semivariance function was exponential model with spatial variation ratio 0.726, which showed strong spatial correlation, and the spatial correlated scale was 0.18'; that the vegetation coverage data in the study area was relatively stable, and the instability mainly occurred on the border of the study area and the surroundings.
基金co-supported by the China National Social Science Foundation(09&ZD029)MOE Project of Key Research Institute of Humanities and Social Sciences at Universities in China (2009JJD790029)+1 种基金Doctoral Thesis Fund of Beijing Municipal Science and Technology Commission (zz200923)the CAERC program(Tsinghua/ GM/SAIC-China)
文摘Three types of low-carbon vehicle technologies in China are reviewed. Potential effects are listed for those integrated energy-saving technologies for conventional vehicles. Low carbon transitions, including alternative vehicle power train systems and fuels, are discussed on their development status and trends, including life cycle primary fossil energy use and greenhouse gas emissions of each pathway. To further support the low-carbon vehicle technologies development, integrated policies should seek to: (1) employ those integrated energy-saving technologies, (2) apply hybrid electric technology, (3) commercialize electric vehicles through battery technology innovation, (4) support fuel cell vehicles and hydrogen technology R&D for future potential applications, (5) boost the R&D of second generation biofuel technology, and (6) conduct further research on applying low-carbon technologies including CO2 capture and storage technology to coal-based transportation solutions.
文摘In the automotive concept design stages, functionally positioning the newly introduced autonomous technologies or remodelling the vehicle accordingly and evaluating the steps or determining the workload together with the collaboration intensity in the current flow is the initial step for the entire process efficiency. Therefore, the main purpose of the research is to reveal the effects of the autonomous technologies, which are newly included in the automotive concept design stages in automotive manufacturing industry companies that continue their lives under heavy competition conditions, according to the order of importance. The objective of this research is to both increase the efficiency of automotive concept design stages and to determine the measurement of the effects of new autonomous vehicle technologies in practice. Under the AHP method used in the research, the automotive concept design stages constitute the alternatives in the order of importance of the working structure, as well as the application variables of autonomous vehicle technologies, the criteria of the mathematical model. In addition, the research method modelled in the study, under the AHP mathematical model, reveals the performances or order of importance of the automotive concept design stages under autonomous technologies. Therefore, the resulting process performances constitute important inputs for efficiency and optimization studies under different research approaches. When the results of the study are examined, due to the high level of influence on the new vehicle concept design performance in automotive industry companies, the adaptation or application steps of autonomous vehicle technologies create new needs in the whole process. The determination of innovation creation clusters in the design process steps or the selection of the density of new technology adaptation in the stages and the order of importance provide a competitive advantage along with optimization in the basic functions of the automotive industry companies. However, the determination of new workload clusters in the mentioned automotive concept design process steps or the effect of autonomous technologies in the design stages, selection, transfer from theory to practice, multiple conflicting criteria and uncertain parameters create a very complex situation. For all these reasons, the Analytical Hierarchy Process (AHP), which is one of the widely used multi-criteria decision-making tools, is considered as a suitable approach for creating such order of importance and solving problems. In this study, an AHP mathematical model was created that determines the workload clusters created by autonomous vehicle technology applications that have just begun to guide the automotive concept design process, which is the main function of automotive manufacturing industry companies. Therefore, in line with the innovations, changes and adequacy criteria created by the current automotive concept design stages in the new autonomous vehicle technology adaptation, a stage order of importance has been selected.
文摘New road transportation systems solutions create significant changes in existing automotive manufacturing industry products and technologies, from design to use. The conveniences within the framework of new approaches brought by autonomous vehicle technologies primarily make individuals transition from driver duty to passenger and high-comfort alternative travel technologies. Therefore, the research: defining the path followed by the autonomous vehicle technologies, which lead to the development of the said new life model and automotive products within the future fiction, in the stages of designing new concept vehicles in practice or measuring the effect on the processes constitute important values for the future prediction of this sector. In addition, the research has focused on the effects of interdisciplinary studies at the automotive concept design stages, which are at the beginning of today’s lean and new product development process, where innovation goals or technologies emerge with more concrete needs. New autonomous vehicle technologies and the main purpose of revealing the interdisciplinary studies created by new disciplines in the current automotive concept design stages make significant contributions to the optimization of the lean product development process and value creation. For this reason, the automotive manufacturing industry, which is on the eve of a major transformation with the said new autonomous vehicle technologies;determining the needs or sustainable position in the flow of digital perception and orientation systems;determining value creation criteria related to the functioning of automotive concept design processes or new acceptance criteria through one-on-one interviews in the field;constitutes the focus of the research. The research has examined the new interdisciplinary studies and effects of new autonomous vehicle technologies in the automotive concept design phase, which is the first step of lean product development, with local and global automotive industry company comparisons in operation. Therefore, the differences and similarities between the concept design stages of global automotive companies that are both co-developers of new autonomous vehicle technologies and manufacturing automotive products and local automotive manufacturing companies that only assemble them determine the future competitive structuring of the industry.
文摘Addressing transportation planning, operation and investment challenges requires increasingly sophisticated data and information management strategies. ITS (intelligent transportation systems) and CV (connected vehicle) technologies represent a new approach to capturing and using needed transportation data in real time or near real time. In the case of Michigan, several ITS programs have been launched successfully, but independently of each other. The objective of this research is to evaluate and assess all important factors that will influence the collection, management and use of ITS data, and recommend strategies to develop integrated, dynamic and adaptive data management systems for state transportation agencies.
文摘Countries have invested considerable sums of human capital and material resources in the practical application of self-driving cars demonstrating the impressive market opportunity.In light of this trend,Taiwan does not want to fall behind either.As on-road testing and technological development for self-driving cars continue to develop in different countries,the controversial issues of safety,ethics,liability,and the invasion of privacy continue to emerge.In order to resolve these issues,the government of Taiwan seeks to provide a good environment for AI(artificial intelligence)innovation and applications.This article summarizes and highlights relevant content and key points of Unmanned Vehicles Technology Innovative Experimentation Act,which was legislated in Taiwan in 2018.In addition,it points out the fundamental ethics regulation of AI,which has influenced Taiwan legal policy.
基金co-supported by the National Natural Science Foundation of China (No.61374032)the Aeronautical Science Foundation of China (No.20130753005)
文摘The robust controller design problem for switched polytopic systems under asynchronous switching is addressed.These systems exist in many aviation applications, such as dynamical systems involving rapid variations.A switched polytopic system is established to describe the highly maneuverable technology vehicle within the full flight envelope and a robust dynamic output feedback control method is designed for the switched polytopic system.Combining the Lyapunov-like function method and the average dwell time method, a sufficient condition is derived for the switched polytopic system with asynchronous switching and data dropout to be globally,uniformly and asymptotically stable in terms of linear matrix inequality.The robust dynamic output feedback controller is then applied to the highly maneuverable technology vehicle to illustrate the effectiveness of the proposed approach.The simulation results show that the angle of attack tracking performance is acceptable over the time history and the control surface responses are all satisfying along the full flight trajectory.