Based on the principle of vehicle-track coupling dynamics, SIMPACK multi-body dynamics software is used to establish a C80 wagon line-coupled multi-body dynamics model with 73 degrees of freedom. And the reasonablenes...Based on the principle of vehicle-track coupling dynamics, SIMPACK multi-body dynamics software is used to establish a C80 wagon line-coupled multi-body dynamics model with 73 degrees of freedom. And the reasonableness of the line-coupled dynamics model is verified by using the maximum residual acceleration, the nonlinear critical speed of the wagon. The experimental results show that the established vehicle line coupling dynamics model meets the requirements of vehicle line coupling dynamics modeling.展开更多
This paper, taking Hexi Corridor as an example, analyzes the altemating intimidation and the dynamic evolving relation between urbanization and eco-environment in arid area of West China. We argue that the harmonious ...This paper, taking Hexi Corridor as an example, analyzes the altemating intimidation and the dynamic evolving relation between urbanization and eco-environment in arid area of West China. We argue that the harmonious development system of the urbanization and eco-environment would go through four phases: rudimentary symbiotic phase, harmonious developmental phase, utmost increasing phase and spiral type rising phase. Throughout the four phases, the elements of the system would influence each other, coerce each other, and complete the spiral type rising process from low-grade symbiosis to high-grade harmony together. The study on Hexi Corridor shows that the urbanization level in Hexi Corridor has increased gradually from 1985 to 2003 accompanied with the fluctuations of eco-environment state. The response of eco-environment to urbanization has been evident, but lagged behind the urbanization course. At present, the harmonious development system in Hexi Corridor was in its harmonious developmental phase. However, the coupling degree has increased quickly and approached 90 yet, which is signaling that the system is about to enter the utmost increasing phase, and the ecological crisis will enter the latent period. We have found that the coupling degree can well reflect the interactive coercing and dynamic evolving situation between urbanization and eco-environment in Hexi Corridor. From the temporal change of the coupling degree, it can be concluded that urbanization sometimes needs to pay a certain cost for the damage of the eco-environment in its initial stages, but as the urbanization continues, the state of the eco-environment would be meliorated.展开更多
The seismic response characteristics of underground structures in saturated soils are investigated.A fully fluid-solid coupling dynamic model is developed and implemented into ABAQUS with a user-defined element to sim...The seismic response characteristics of underground structures in saturated soils are investigated.A fully fluid-solid coupling dynamic model is developed and implemented into ABAQUS with a user-defined element to simulate the dynamic behavior of saturated soils.The accuracy of the model is validated using a classic example in literature.The performance of the model is verified by its application on simulating the seismic response characteristics of a subway station built in saturated soils.The merits of the model are demonstrated by comparing the difference of the seismic response of an underground structure in saturated soils between using the fully coupling model and a single-phase medium model.The study finds that the fully coupling model developed herein can simulate the dynamic response characteristics of the underground structures in saturated soils with high accuracy.The seismic response of the underground structure tends to be underestimated by using the single-phase medium model compared with using the fully coupling model,which provides a weaker confining action to the underground structure.展开更多
The existence of rolling deformation area in the rolling mill system is the main characteristic which dis- tinguishes the other machinery. In order to analyze the dynamic property of roll system's flexural deformatio...The existence of rolling deformation area in the rolling mill system is the main characteristic which dis- tinguishes the other machinery. In order to analyze the dynamic property of roll system's flexural deformation, it is necessary to consider the transverse periodic movement of stock in the rolling deformation area which is caused by the flexural deformation movement of roll system simul- taneously. Therefore, the displacement field of roll system and flow of metal in the deformation area is described by kinematic analysis in the dynamic system. Through intro- ducing the lateral displacement function of metal in the deformation area, the dynamic variation of per unit width rolling force can be determined at the same time. Then the coupling law caused by the co-effect of rigid movement and flexural deformation of the system structural elements is determined. Furthermore, a multi-parameter coupling dynamic model of the roll system and stock is established by the principle of virtual work. More explicitly, the cou- pled motion modal analysis was made for the roll system. Meanwhile, the analytical solutions for the flexural defor- mation movement's mode shape functions of rolls are discussed. In addition, the dynamic characteristic of the lateral flow of metal in the rolling deformation area has been analyzed at the same time. The establishment ofdynamic lateral displacement function of metal in the deformation area makes the foundation for analyzing the coupling law between roll system and rolling deformation area, and provides a theoretical basis for the realization of the dynamic shape control of steel strip.展开更多
The importance of study on constitutive model of statically loaded rock experiencing dynamic load is set forth, and the studying methods on dynamic constitutive model are classified according to the current studying s...The importance of study on constitutive model of statically loaded rock experiencing dynamic load is set forth, and the studying methods on dynamic constitutive model are classified according to the current studying status. By way of combining statistic damage model and viscoelastic model, uni-axial and multi-axial constitutive models of statically loaded rock experiencing dynamic load (static-dynamic coupling constitutive model) under intermediate strain rate are established. The verification experiment on 2D constitutive model under different static stress and dynamic stress with different frequencies is designed and performed. It is found that there is a good agreement between the experimental stress-strain curves and the theoretical stress-strain curves.展开更多
Based on the deformation theory of elastic beams, the coupling effect between the coupling displacements of a point on the middle line of beam and large overall motion is presented. The 'coupling matrix library...Based on the deformation theory of elastic beams, the coupling effect between the coupling displacements of a point on the middle line of beam and large overall motion is presented. The 'coupling matrix library' and Jourdain's variation principle and single direction recursive formulation method are used to establish the general coupling dynamical equations of flexible multibody system. Two typical examples show the coupling effect between coupling displacements and large overall motion on the dynamics of flexible multibody system consisting of beams.展开更多
The spin-boson model with quadratic coupling is studied using the bosonic numerical renormalization group method.We focus on the dynamical auto-correlation functions CO(ω), with the operator taken as σx, σz, and ...The spin-boson model with quadratic coupling is studied using the bosonic numerical renormalization group method.We focus on the dynamical auto-correlation functions CO(ω), with the operator taken as σx, σz, and X, respectively. In the weak-coupling regime α 〈 αc, these functions show power law ω-dependence in the small frequency limit, with the powers 1 + 2s, 1 + 2s, and s, respectively. At the critical point α = αc of the boson-unstable quantum phase transition, the critical exponents yO of these correlation functions are obtained as yσx= yσz= 1-2s and yX=-s, respectively. Here s is the bath index and X is the boson displacement operator. Close to the spin flip point, the high frequency peak of Cσx(ω) is broadened significantly and the line shape changes qualitatively, showing enhanced dephasing at the spin flip point.展开更多
To reveal the dynamic mechanical characteristics of deep rocks,a series of impact tests under triaxial static stress states corresponding to depths of 300-2400 m were conducted.The results showed that both the strain ...To reveal the dynamic mechanical characteristics of deep rocks,a series of impact tests under triaxial static stress states corresponding to depths of 300-2400 m were conducted.The results showed that both the strain rates and the stress environments in depth significantly affect the mechanical characteristics of rocks.The sensitivity of strain rate to the dynamic strength and deformation modulus shows a negative correlation with depth,indicating that producing penetrative cracks in deep environments is more difficult when damage occurs.The dynamic strength shows a tendency to decrease and then increase slightly,but decreases sharply finally.Transmissivity demonstrates a similar trend as that of strength,whereas reflectivity indicates the opposite trend.Furthermore,two critical depths with high dynamically induced hazard possibilities based on the China Jinping Underground Laboratory(CJPL)were proposed for deep engineering.The first critical depth is 600-900 m,beyond which the sensitivity of rock dynamic characteristics to the strain rate and restraint of circumferential stress decrease,causing instability of surrounding rocks under axial stress condition.The second one lies at 1500-1800 m,where the wave impedance and dynamic strength of deep surrounding rocks drop sharply,and the dissipation energy presents a negative value.It suggests that the dynamic instability of deep surrounding rocks can be divided into dynamic load dominant and dynamic load induced types,depending on the second critical depth.展开更多
Inspired by the integrated guidance and control design for endo-atmospheric aircraft,the integrated position and attitude control of spacecraft has attracted increasing attention and gradually induced a wide variety o...Inspired by the integrated guidance and control design for endo-atmospheric aircraft,the integrated position and attitude control of spacecraft has attracted increasing attention and gradually induced a wide variety of study results in last over two decades,fully incorporating control requirements and actuator characteristics of space missions.This paper presents a novel and comprehensive survey to the coupled position and attitude motions of spacecraft from the perspective of dynamics and control.To this end,a systematic analysis is firstly conducted in details to show the position and attitude mutual couplings of spacecraft.Particularly,in terms of the time discrepancy between spacecraft position and attitude motions,space missions can be categorized into two types:space proximity operation and space orbital maneuver.Based on this classification,the studies on the coupled dynamic modeling and the integrated control design for position and attitude motions of spacecraft are sequentially summarized and analyzed.On the one hand,various coupled position and dynamic formulations of spacecraft based on various mathematical tools are reviewed and compared from five aspects,including mission applicability,modeling simplicity,physical clearance,information matching and expansibility.On the other hand,the development of the integrated position and attitude control of spacecraft is analyzed for two space missions,and especially,five distinctive development trends are captured for space operation missions.Finally,insightful prospects on future development of the integrated position and attitude control technology of spacecraft are proposed,pointing out current primary technical issues and possible feasible solutions.展开更多
A complete geometric nonlinear formulation for rigid-flexible coupling dynamics of a flexible beam undergoing large overall motion was proposed based on virtual work principle, in which all the high-order terms relate...A complete geometric nonlinear formulation for rigid-flexible coupling dynamics of a flexible beam undergoing large overall motion was proposed based on virtual work principle, in which all the high-order terms related to coupling deformation were included in dynamic equations. Simulation examples of the flexible beam with prescribed rotation and free rotation were investigated. Numerical results show that the use of the first-order approximation coupling (FOAC) model may lead to a significant error when the flexible beam experiences large deformation or large deformation velocity. However, the correct solutions can always be obtained by using the present complete model. The difference in essence between this model and the FOAC model is revealed. These coupling high-order terms, which are ignored in FOAC model, have a remarkable effect on the dynamic behavior of the flexible body. Therefore, these terms should be included for the rigid-flexible dynamic modeling and analysis of flexible body undergoing motions with high speed.展开更多
As it is known, track transportation can be divided into track system above and track system below. While the train is moving, the parts above and below are interacted and influenced. Therefore, in fact, the problem o...As it is known, track transportation can be divided into track system above and track system below. While the train is moving, the parts above and below are interacted and influenced. Therefore, in fact, the problem of track transportation is the match between the vehicle and the raihvay line system. In this paper, on a basis of dynamic analysis of the vehicle-subgrade model of vertical coupled system under primary suspension, utilizing track maintenance standard and simulating track irregularity excitation, the dynamic interaction of vehicle-track-subgrade system is researched in theory and dynamic model of the vertical vehicle-track-subgrade coupled system under secondary suspension is established by compatibility condition of deformation. Even this model considers the actual structure of a vehicle, also considers vibration characteristic of the substructure of track including subgrade and foundation. All these work want to be benefit for understanding and design about the dynamic characters of subgrade in high speed railway.展开更多
The acquisition of spatial-temporal information of frozen soil is fundamental for the study of frozen soil dynamics and its feedback to climate change in cold regions.With advancement of remote sensing and better unde...The acquisition of spatial-temporal information of frozen soil is fundamental for the study of frozen soil dynamics and its feedback to climate change in cold regions.With advancement of remote sensing and better understanding of frozen soil dynamics,discrimination of freeze and thaw status of surface soil based on passive microwave remote sensing and numerical simulation of frozen soil processes under water and heat transfer principles provides valuable means for regional and global frozen soil dynamic monitoring and systematic spatial-temporal responses to global change.However,as an important data source of frozen soil processes,remotely sensed information has not yet been fully utilized in the numerical simulation of frozen soil processes.Although great progress has been made in remote sensing and frozen soil physics,yet few frozen soil research has been done on the application of remotely sensed information in association with the numerical model for frozen soil process studies.In the present study,a distributed numerical model for frozen soil dynamic studies based on coupled water-heat transferring theory in association with remotely sensed frozen soil datasets was developed.In order to reduce the uncertainty of the simulation,the remotely sensed frozen soil information was used to monitor and modify relevant parameters in the process of model simulation.The remotely sensed information and numerically simulated spatial-temporal frozen soil processes were validated by in-situ field observations in cold regions near the town of Naqu on the East-Central Tibetan Plateau.The results suggest that the overall accuracy of the algorithm for discriminating freeze and thaw status of surface soil based on passive microwave remote sensing was more than 95%.These results provided an accurate initial freeze and thaw status of surface soil for coupling and calibrating the numerical model of this study.The numerically simulated frozen soil processes demonstrated good performance of the distributed numerical model based on the coupled water-heat transferring theory.The relatively larger uncertainties of the numerical model were found in alternating periods between freezing and thawing of surface soil.The average accuracy increased by about 5%after integrating remotely sensed information on the surface soil.The simulation accuracy was significantly improved,especially in transition periods between freezing and thawing of the surface soil.展开更多
With photoelectric tracking system as the research object,based on the theorem of moment of momentum and Euler dynamic equation,Nonlinear biaxial coupling dynamic model of tracking turntable is established.Effects of ...With photoelectric tracking system as the research object,based on the theorem of moment of momentum and Euler dynamic equation,Nonlinear biaxial coupling dynamic model of tracking turntable is established.Effects of moment of inertia coupling,speed coupling and the dynamic coupling between tracking turntable shafts were studied,the analytical relation between them was given in theory.Verify the change trend of theoretical model.And it provides the theory reference and model base,for the future design of the high precision tracking controller And control parameter selection and optimization.In the end,specific measures are made for structure optimization.展开更多
The underwater installation of marine equipment in deep-water development requires safe lifting and accurate positioning. The heave compensation system is an important technology to ensure normal operation and improve...The underwater installation of marine equipment in deep-water development requires safe lifting and accurate positioning. The heave compensation system is an important technology to ensure normal operation and improve work accuracy. To provide a theoretical basis for the heave compensation system, in this paper, the continuous modeling method is employed to build up a coupled model of deep-water lifting systems in vertical direction. The response characteristics of dynamic movement are investigated. The simulation results show that the resonance problem appears in the process of the whole releasing load, the lifting system generates resonance and the displacement response of the lifting load is maximal when the sinking depth is about 2000 m. This paper also analyzes the main influencing factors on the dynamic response of load including cable stiffness, damping coefficient of the lifting system, mass and added mass of lifting load, among which cable stiffness and damping coefficient of the lifting system have the greatest influence on dynamic response of lifting load when installation load is determined. So the vertical dynamic movement response of the load is reduced by installing a damper on the lifting cable and selecting the appropriate cable stiffness.展开更多
A kinetic model of the rigid and flexible coupling system for terminally sensitive submunition is set up with Kane's method. The parachute is considered as a flexible body, the flexible displacement is expressed w...A kinetic model of the rigid and flexible coupling system for terminally sensitive submunition is set up with Kane's method. The parachute is considered as a flexible body, the flexible displacement is expressed with modal spread method, the position of the parachute is expressed with a hybrid coordinate method, and the kinematics of the terminally sensitive submunition is analyzed. Ten generalized coordinates relative to the attitude of the terminally sensitive submunition are chosen, and the correlative generalized active forces, the generalized inertial forces, the generalized internal forces are calculated in turn. On the base of the Kane's method, the ten degrees of freedom dynamic equations for the coupled terminally sensitive submunition are finally set up. This model can be used to expediently simulate and analyze accurately the exterior ballistic trajectory of terminally sensitive submunition, and provide the overall design of the terminally sensitive submunition with some helpful references.展开更多
The dynamics of a coupled rigid-flexible rocket launcher is reported. The coupled rigid-flexible rocket launcher is divided into two subsystems, one is a system of rigid bodies, the other a flexible launch tube which ...The dynamics of a coupled rigid-flexible rocket launcher is reported. The coupled rigid-flexible rocket launcher is divided into two subsystems, one is a system of rigid bodies, the other a flexible launch tube which can undergo large overall motions spatially. First, the mathematical models for these two subsystems were established respectively. Then the dynamic model for the whole system was obtained by considering the coupling effect between these two subsystems. The approach, which divides a complex system into several simple subsystems first and then obtains the dynamic model for the whole system via combining the existing dynamic models for simple subsystems, can make the modeling procedure efficient and convenient.展开更多
The nonlinear dynamic model of the marine diesel crankshaft system with a propeller and 6 cranks is established, in which the variable moment of inertia of the linkage and the piston, coupling effect between torsional...The nonlinear dynamic model of the marine diesel crankshaft system with a propeller and 6 cranks is established, in which the variable moment of inertia of the linkage and the piston, coupling effect between torsional and axial vibration, the actuating force applied on the piston, the actuating torque and force applied on the propeller is included. The governing equations of the model denote a strong nonlinear and non autonomous system. By numeric simulation, the dynamic response of the system to initial displacement and initial speed, variable moment of inertia, the pressure applied on the piston by combustion gas, the torque and the axial force applied on the propeller by fluid is researched respectively. According to the research results, the variable moment of inertia and coupling effect between torsional and axial vibration are the fundamental reason for nonlinear vibration. Different actuating factors can not only result in different frequency components of the response, but make the same frequency component have different vibration amplitude. The dynamic behavior of the system is not influenced obviously by the actuating torque and force applied on the propeller. There is obvious difference in sensitivity of the dynamic response in the different direction to the same actuating factor.展开更多
The arresting process of carrier-based aircraft is widely recognized as a challenging task,characterized by the highest accident rate among all carrier-based aircraft operations.Dynamic simulation plays a crucial role...The arresting process of carrier-based aircraft is widely recognized as a challenging task,characterized by the highest accident rate among all carrier-based aircraft operations.Dynamic simulation plays a crucial role in assessing the intricate responses of the arresting process,favoring the design of carrier-based aircraft.An efficient and accurate rigid-flexible coupling model for analyzing the dynamic response of the arresting process is proposed.By combining the dynamic characteristics of airframe,landing gear,arresting hook and arresting gear system,the rigid-flexible coupling dynamic model is established to reflect the relative motion of the coupling parts and arresting load.The dynamic model is verified through simulations of landing gear landing drops and by comparing the arresting simulation results with corresponding data in the US military standard.Additionally,simulations of the arresting process under different off-center distance and aircraft yaw angle are conducted to obtain the dynamic response of the aircraft during the arresting process.The result indicates that the rigid-flexible coupling dynamic model proposed is effective for analyzing the arresting dynamics response of carrier-based aircraft.The axial force of the arresting cable on both sides of the hook engagement point,pitch and yaw angle of aircraft are inconsistent under yaw and off-center arresting.The analysis method and obtained results provide valuable references for assessing the dynamic responses of carrier-based aircraft during arresting process and offer valuable in-sights in the design of carrier-based aircraft.展开更多
In this study, we propose a novel discrete-time coupled model to generate oscillatory responses via periodic points with a high periodic order. Our coupled system comprises one-dimensional oscillators based on the Rul...In this study, we propose a novel discrete-time coupled model to generate oscillatory responses via periodic points with a high periodic order. Our coupled system comprises one-dimensional oscillators based on the Rulkov map and a single globally coupled oscillator. Because the waveform of a one-dimensional oscillator has sharply defined peaks, the coupled system can be applied to dynamic image segmentation. Our proposed system iteratively transforms the coupling of each oscillator based on an input value that corresponds to the pixel value of an input image. This approach enables our system to segment image regions in which pixel values gradually change with respect to a connected region. We conducted a bifurcation analysis of a single oscillator and a three-coupled model. Through simulations, we demonstrated that our system works well for gray-level images with three isolated image regions.展开更多
In the process of mining coalbed methane(CBM),an unsteady state often arises due to the rapid extraction,release and pressure relief of CBM.In this case,the effective stress of coal changes dynamically,affecting the s...In the process of mining coalbed methane(CBM),an unsteady state often arises due to the rapid extraction,release and pressure relief of CBM.In this case,the effective stress of coal changes dynamically,affecting the stability of the gassy coal seam.In this paper,gas release tests of gassy coal under conventional triaxial compression were performed,and the dynamic effective stress(DES)during gas release was obtained indirectly based on a constitutive equation and deformation of coal.The results show that the maximum increases in DES caused by the release of free gas and adsorbed gas under the stress of 1.1 MPa were 0.811 and 5.418 MPa,respectively,which seriously affected the stress state of the coal.During the gas release,the free gas pressure and the adsorbed gas volume were the parameters that directly affected the DES and showed a positive linear relationship with the DES with an intercept of zero.The DES of the coal sample increased exponentially with time,which was determined by the contents of free and adsorbed gas.Based on the experimental results and theoretical analysis,an effective stress model was obtained for loaded gassy coal during gas release.The results of verification indicated accuracy greater than 99%.展开更多
文摘Based on the principle of vehicle-track coupling dynamics, SIMPACK multi-body dynamics software is used to establish a C80 wagon line-coupled multi-body dynamics model with 73 degrees of freedom. And the reasonableness of the line-coupled dynamics model is verified by using the maximum residual acceleration, the nonlinear critical speed of the wagon. The experimental results show that the established vehicle line coupling dynamics model meets the requirements of vehicle line coupling dynamics modeling.
基金NationalNaturalScience Emphases Foundation ofChina,No.40335049NationalNaturalScience Foundation ofChina,No.40471059
文摘This paper, taking Hexi Corridor as an example, analyzes the altemating intimidation and the dynamic evolving relation between urbanization and eco-environment in arid area of West China. We argue that the harmonious development system of the urbanization and eco-environment would go through four phases: rudimentary symbiotic phase, harmonious developmental phase, utmost increasing phase and spiral type rising phase. Throughout the four phases, the elements of the system would influence each other, coerce each other, and complete the spiral type rising process from low-grade symbiosis to high-grade harmony together. The study on Hexi Corridor shows that the urbanization level in Hexi Corridor has increased gradually from 1985 to 2003 accompanied with the fluctuations of eco-environment state. The response of eco-environment to urbanization has been evident, but lagged behind the urbanization course. At present, the harmonious development system in Hexi Corridor was in its harmonious developmental phase. However, the coupling degree has increased quickly and approached 90 yet, which is signaling that the system is about to enter the utmost increasing phase, and the ecological crisis will enter the latent period. We have found that the coupling degree can well reflect the interactive coercing and dynamic evolving situation between urbanization and eco-environment in Hexi Corridor. From the temporal change of the coupling degree, it can be concluded that urbanization sometimes needs to pay a certain cost for the damage of the eco-environment in its initial stages, but as the urbanization continues, the state of the eco-environment would be meliorated.
基金National Natural Science Foundation of People’s Republic of China under Grant Nos.51178011 and 51778386the Key Fundamental Study Development Project of People’s Republic of China under Grant No.2011CB013602。
文摘The seismic response characteristics of underground structures in saturated soils are investigated.A fully fluid-solid coupling dynamic model is developed and implemented into ABAQUS with a user-defined element to simulate the dynamic behavior of saturated soils.The accuracy of the model is validated using a classic example in literature.The performance of the model is verified by its application on simulating the seismic response characteristics of a subway station built in saturated soils.The merits of the model are demonstrated by comparing the difference of the seismic response of an underground structure in saturated soils between using the fully coupling model and a single-phase medium model.The study finds that the fully coupling model developed herein can simulate the dynamic response characteristics of the underground structures in saturated soils with high accuracy.The seismic response of the underground structure tends to be underestimated by using the single-phase medium model compared with using the fully coupling model,which provides a weaker confining action to the underground structure.
基金Supported by National Natural Science Foundation of China(Grant No.51375424)
文摘The existence of rolling deformation area in the rolling mill system is the main characteristic which dis- tinguishes the other machinery. In order to analyze the dynamic property of roll system's flexural deformation, it is necessary to consider the transverse periodic movement of stock in the rolling deformation area which is caused by the flexural deformation movement of roll system simul- taneously. Therefore, the displacement field of roll system and flow of metal in the deformation area is described by kinematic analysis in the dynamic system. Through intro- ducing the lateral displacement function of metal in the deformation area, the dynamic variation of per unit width rolling force can be determined at the same time. Then the coupling law caused by the co-effect of rigid movement and flexural deformation of the system structural elements is determined. Furthermore, a multi-parameter coupling dynamic model of the roll system and stock is established by the principle of virtual work. More explicitly, the cou- pled motion modal analysis was made for the roll system. Meanwhile, the analytical solutions for the flexural defor- mation movement's mode shape functions of rolls are discussed. In addition, the dynamic characteristic of the lateral flow of metal in the rolling deformation area has been analyzed at the same time. The establishment ofdynamic lateral displacement function of metal in the deformation area makes the foundation for analyzing the coupling law between roll system and rolling deformation area, and provides a theoretical basis for the realization of the dynamic shape control of steel strip.
基金Projects(10472134 50490274+1 种基金 50174056) supported by the National Natural Science Foundation of China Project(2005038250) supported by China Postdoctoral Science Foundation
文摘The importance of study on constitutive model of statically loaded rock experiencing dynamic load is set forth, and the studying methods on dynamic constitutive model are classified according to the current studying status. By way of combining statistic damage model and viscoelastic model, uni-axial and multi-axial constitutive models of statically loaded rock experiencing dynamic load (static-dynamic coupling constitutive model) under intermediate strain rate are established. The verification experiment on 2D constitutive model under different static stress and dynamic stress with different frequencies is designed and performed. It is found that there is a good agreement between the experimental stress-strain curves and the theoretical stress-strain curves.
基金the National Natural Science Foundation of China(No.19832040)
文摘Based on the deformation theory of elastic beams, the coupling effect between the coupling displacements of a point on the middle line of beam and large overall motion is presented. The 'coupling matrix library' and Jourdain's variation principle and single direction recursive formulation method are used to establish the general coupling dynamical equations of flexible multibody system. Two typical examples show the coupling effect between coupling displacements and large overall motion on the dynamics of flexible multibody system consisting of beams.
基金supported by the National Key Basic Research Program of China(Grant No.2012CB921704)the National Natural Science Foundation of China(Grant No.11374362)+1 种基金the Fundamental Research Funds for the Central Universities,Chinathe Research Funds of Renmin University of China(Grant No.15XNLQ03)
文摘The spin-boson model with quadratic coupling is studied using the bosonic numerical renormalization group method.We focus on the dynamical auto-correlation functions CO(ω), with the operator taken as σx, σz, and X, respectively. In the weak-coupling regime α 〈 αc, these functions show power law ω-dependence in the small frequency limit, with the powers 1 + 2s, 1 + 2s, and s, respectively. At the critical point α = αc of the boson-unstable quantum phase transition, the critical exponents yO of these correlation functions are obtained as yσx= yσz= 1-2s and yX=-s, respectively. Here s is the bath index and X is the boson displacement operator. Close to the spin flip point, the high frequency peak of Cσx(ω) is broadened significantly and the line shape changes qualitatively, showing enhanced dephasing at the spin flip point.
基金supported by the National Natural Science Foundation of China(No.U1965203).
文摘To reveal the dynamic mechanical characteristics of deep rocks,a series of impact tests under triaxial static stress states corresponding to depths of 300-2400 m were conducted.The results showed that both the strain rates and the stress environments in depth significantly affect the mechanical characteristics of rocks.The sensitivity of strain rate to the dynamic strength and deformation modulus shows a negative correlation with depth,indicating that producing penetrative cracks in deep environments is more difficult when damage occurs.The dynamic strength shows a tendency to decrease and then increase slightly,but decreases sharply finally.Transmissivity demonstrates a similar trend as that of strength,whereas reflectivity indicates the opposite trend.Furthermore,two critical depths with high dynamically induced hazard possibilities based on the China Jinping Underground Laboratory(CJPL)were proposed for deep engineering.The first critical depth is 600-900 m,beyond which the sensitivity of rock dynamic characteristics to the strain rate and restraint of circumferential stress decrease,causing instability of surrounding rocks under axial stress condition.The second one lies at 1500-1800 m,where the wave impedance and dynamic strength of deep surrounding rocks drop sharply,and the dissipation energy presents a negative value.It suggests that the dynamic instability of deep surrounding rocks can be divided into dynamic load dominant and dynamic load induced types,depending on the second critical depth.
基金supported by the National Science Foundation of China(61703437,52232014,61690210,61690212)。
文摘Inspired by the integrated guidance and control design for endo-atmospheric aircraft,the integrated position and attitude control of spacecraft has attracted increasing attention and gradually induced a wide variety of study results in last over two decades,fully incorporating control requirements and actuator characteristics of space missions.This paper presents a novel and comprehensive survey to the coupled position and attitude motions of spacecraft from the perspective of dynamics and control.To this end,a systematic analysis is firstly conducted in details to show the position and attitude mutual couplings of spacecraft.Particularly,in terms of the time discrepancy between spacecraft position and attitude motions,space missions can be categorized into two types:space proximity operation and space orbital maneuver.Based on this classification,the studies on the coupled dynamic modeling and the integrated control design for position and attitude motions of spacecraft are sequentially summarized and analyzed.On the one hand,various coupled position and dynamic formulations of spacecraft based on various mathematical tools are reviewed and compared from five aspects,including mission applicability,modeling simplicity,physical clearance,information matching and expansibility.On the other hand,the development of the integrated position and attitude control of spacecraft is analyzed for two space missions,and especially,five distinctive development trends are captured for space operation missions.Finally,insightful prospects on future development of the integrated position and attitude control technology of spacecraft are proposed,pointing out current primary technical issues and possible feasible solutions.
基金Project(10772113) supported by the National Natural Science Foundation of China
文摘A complete geometric nonlinear formulation for rigid-flexible coupling dynamics of a flexible beam undergoing large overall motion was proposed based on virtual work principle, in which all the high-order terms related to coupling deformation were included in dynamic equations. Simulation examples of the flexible beam with prescribed rotation and free rotation were investigated. Numerical results show that the use of the first-order approximation coupling (FOAC) model may lead to a significant error when the flexible beam experiences large deformation or large deformation velocity. However, the correct solutions can always be obtained by using the present complete model. The difference in essence between this model and the FOAC model is revealed. These coupling high-order terms, which are ignored in FOAC model, have a remarkable effect on the dynamic behavior of the flexible body. Therefore, these terms should be included for the rigid-flexible dynamic modeling and analysis of flexible body undergoing motions with high speed.
基金Project supported by the Science Foundation of Chongqing Municipal Commission of Education (No.KJ060404)the Natural Science Foundation of Chongqing (No.CSTC, 2006BB6048)the Startup Foundation of Chongqing Jiaotong University
文摘As it is known, track transportation can be divided into track system above and track system below. While the train is moving, the parts above and below are interacted and influenced. Therefore, in fact, the problem of track transportation is the match between the vehicle and the raihvay line system. In this paper, on a basis of dynamic analysis of the vehicle-subgrade model of vertical coupled system under primary suspension, utilizing track maintenance standard and simulating track irregularity excitation, the dynamic interaction of vehicle-track-subgrade system is researched in theory and dynamic model of the vertical vehicle-track-subgrade coupled system under secondary suspension is established by compatibility condition of deformation. Even this model considers the actual structure of a vehicle, also considers vibration characteristic of the substructure of track including subgrade and foundation. All these work want to be benefit for understanding and design about the dynamic characters of subgrade in high speed railway.
基金This work was supported by the National Key R&D Program of(Grant No.2016YFA0602302).
文摘The acquisition of spatial-temporal information of frozen soil is fundamental for the study of frozen soil dynamics and its feedback to climate change in cold regions.With advancement of remote sensing and better understanding of frozen soil dynamics,discrimination of freeze and thaw status of surface soil based on passive microwave remote sensing and numerical simulation of frozen soil processes under water and heat transfer principles provides valuable means for regional and global frozen soil dynamic monitoring and systematic spatial-temporal responses to global change.However,as an important data source of frozen soil processes,remotely sensed information has not yet been fully utilized in the numerical simulation of frozen soil processes.Although great progress has been made in remote sensing and frozen soil physics,yet few frozen soil research has been done on the application of remotely sensed information in association with the numerical model for frozen soil process studies.In the present study,a distributed numerical model for frozen soil dynamic studies based on coupled water-heat transferring theory in association with remotely sensed frozen soil datasets was developed.In order to reduce the uncertainty of the simulation,the remotely sensed frozen soil information was used to monitor and modify relevant parameters in the process of model simulation.The remotely sensed information and numerically simulated spatial-temporal frozen soil processes were validated by in-situ field observations in cold regions near the town of Naqu on the East-Central Tibetan Plateau.The results suggest that the overall accuracy of the algorithm for discriminating freeze and thaw status of surface soil based on passive microwave remote sensing was more than 95%.These results provided an accurate initial freeze and thaw status of surface soil for coupling and calibrating the numerical model of this study.The numerically simulated frozen soil processes demonstrated good performance of the distributed numerical model based on the coupled water-heat transferring theory.The relatively larger uncertainties of the numerical model were found in alternating periods between freezing and thawing of surface soil.The average accuracy increased by about 5%after integrating remotely sensed information on the surface soil.The simulation accuracy was significantly improved,especially in transition periods between freezing and thawing of the surface soil.
文摘With photoelectric tracking system as the research object,based on the theorem of moment of momentum and Euler dynamic equation,Nonlinear biaxial coupling dynamic model of tracking turntable is established.Effects of moment of inertia coupling,speed coupling and the dynamic coupling between tracking turntable shafts were studied,the analytical relation between them was given in theory.Verify the change trend of theoretical model.And it provides the theory reference and model base,for the future design of the high precision tracking controller And control parameter selection and optimization.In the end,specific measures are made for structure optimization.
基金sponsored by the Major Projects of National Science and Technology (2011ZX05056-003)
文摘The underwater installation of marine equipment in deep-water development requires safe lifting and accurate positioning. The heave compensation system is an important technology to ensure normal operation and improve work accuracy. To provide a theoretical basis for the heave compensation system, in this paper, the continuous modeling method is employed to build up a coupled model of deep-water lifting systems in vertical direction. The response characteristics of dynamic movement are investigated. The simulation results show that the resonance problem appears in the process of the whole releasing load, the lifting system generates resonance and the displacement response of the lifting load is maximal when the sinking depth is about 2000 m. This paper also analyzes the main influencing factors on the dynamic response of load including cable stiffness, damping coefficient of the lifting system, mass and added mass of lifting load, among which cable stiffness and damping coefficient of the lifting system have the greatest influence on dynamic response of lifting load when installation load is determined. So the vertical dynamic movement response of the load is reduced by installing a damper on the lifting cable and selecting the appropriate cable stiffness.
文摘A kinetic model of the rigid and flexible coupling system for terminally sensitive submunition is set up with Kane's method. The parachute is considered as a flexible body, the flexible displacement is expressed with modal spread method, the position of the parachute is expressed with a hybrid coordinate method, and the kinematics of the terminally sensitive submunition is analyzed. Ten generalized coordinates relative to the attitude of the terminally sensitive submunition are chosen, and the correlative generalized active forces, the generalized inertial forces, the generalized internal forces are calculated in turn. On the base of the Kane's method, the ten degrees of freedom dynamic equations for the coupled terminally sensitive submunition are finally set up. This model can be used to expediently simulate and analyze accurately the exterior ballistic trajectory of terminally sensitive submunition, and provide the overall design of the terminally sensitive submunition with some helpful references.
文摘The dynamics of a coupled rigid-flexible rocket launcher is reported. The coupled rigid-flexible rocket launcher is divided into two subsystems, one is a system of rigid bodies, the other a flexible launch tube which can undergo large overall motions spatially. First, the mathematical models for these two subsystems were established respectively. Then the dynamic model for the whole system was obtained by considering the coupling effect between these two subsystems. The approach, which divides a complex system into several simple subsystems first and then obtains the dynamic model for the whole system via combining the existing dynamic models for simple subsystems, can make the modeling procedure efficient and convenient.
文摘The nonlinear dynamic model of the marine diesel crankshaft system with a propeller and 6 cranks is established, in which the variable moment of inertia of the linkage and the piston, coupling effect between torsional and axial vibration, the actuating force applied on the piston, the actuating torque and force applied on the propeller is included. The governing equations of the model denote a strong nonlinear and non autonomous system. By numeric simulation, the dynamic response of the system to initial displacement and initial speed, variable moment of inertia, the pressure applied on the piston by combustion gas, the torque and the axial force applied on the propeller by fluid is researched respectively. According to the research results, the variable moment of inertia and coupling effect between torsional and axial vibration are the fundamental reason for nonlinear vibration. Different actuating factors can not only result in different frequency components of the response, but make the same frequency component have different vibration amplitude. The dynamic behavior of the system is not influenced obviously by the actuating torque and force applied on the propeller. There is obvious difference in sensitivity of the dynamic response in the different direction to the same actuating factor.
基金This study was co-supported by the National Natural Science Foundation of China(No.T2288101)the National Key Research and Development Project,China(No.2020YFC1512500).
文摘The arresting process of carrier-based aircraft is widely recognized as a challenging task,characterized by the highest accident rate among all carrier-based aircraft operations.Dynamic simulation plays a crucial role in assessing the intricate responses of the arresting process,favoring the design of carrier-based aircraft.An efficient and accurate rigid-flexible coupling model for analyzing the dynamic response of the arresting process is proposed.By combining the dynamic characteristics of airframe,landing gear,arresting hook and arresting gear system,the rigid-flexible coupling dynamic model is established to reflect the relative motion of the coupling parts and arresting load.The dynamic model is verified through simulations of landing gear landing drops and by comparing the arresting simulation results with corresponding data in the US military standard.Additionally,simulations of the arresting process under different off-center distance and aircraft yaw angle are conducted to obtain the dynamic response of the aircraft during the arresting process.The result indicates that the rigid-flexible coupling dynamic model proposed is effective for analyzing the arresting dynamics response of carrier-based aircraft.The axial force of the arresting cable on both sides of the hook engagement point,pitch and yaw angle of aircraft are inconsistent under yaw and off-center arresting.The analysis method and obtained results provide valuable references for assessing the dynamic responses of carrier-based aircraft during arresting process and offer valuable in-sights in the design of carrier-based aircraft.
文摘In this study, we propose a novel discrete-time coupled model to generate oscillatory responses via periodic points with a high periodic order. Our coupled system comprises one-dimensional oscillators based on the Rulkov map and a single globally coupled oscillator. Because the waveform of a one-dimensional oscillator has sharply defined peaks, the coupled system can be applied to dynamic image segmentation. Our proposed system iteratively transforms the coupling of each oscillator based on an input value that corresponds to the pixel value of an input image. This approach enables our system to segment image regions in which pixel values gradually change with respect to a connected region. We conducted a bifurcation analysis of a single oscillator and a three-coupled model. Through simulations, we demonstrated that our system works well for gray-level images with three isolated image regions.
基金This research was funded by the National Natural Science Foundation of China(No.52174081)the China Postdoctoral Science Foundation(No.2021M702001)+1 种基金the Postdoctoral Innovation Project of Shandong Province(No.202102002)the Natural Science Foundation of Shandong Province(No.2019GSF111036).
文摘In the process of mining coalbed methane(CBM),an unsteady state often arises due to the rapid extraction,release and pressure relief of CBM.In this case,the effective stress of coal changes dynamically,affecting the stability of the gassy coal seam.In this paper,gas release tests of gassy coal under conventional triaxial compression were performed,and the dynamic effective stress(DES)during gas release was obtained indirectly based on a constitutive equation and deformation of coal.The results show that the maximum increases in DES caused by the release of free gas and adsorbed gas under the stress of 1.1 MPa were 0.811 and 5.418 MPa,respectively,which seriously affected the stress state of the coal.During the gas release,the free gas pressure and the adsorbed gas volume were the parameters that directly affected the DES and showed a positive linear relationship with the DES with an intercept of zero.The DES of the coal sample increased exponentially with time,which was determined by the contents of free and adsorbed gas.Based on the experimental results and theoretical analysis,an effective stress model was obtained for loaded gassy coal during gas release.The results of verification indicated accuracy greater than 99%.