The vehicular sensor network (VSN) is an important part of intelligent transportation, which is used for real-timedetection and operation control of vehicles and real-time transmission of data and information. In the ...The vehicular sensor network (VSN) is an important part of intelligent transportation, which is used for real-timedetection and operation control of vehicles and real-time transmission of data and information. In the environmentofVSN, massive private data generated by vehicles are transmitted in open channels and used by other vehicle users,so it is crucial to maintain high transmission efficiency and high confidentiality of data. To deal with this problem, inthis paper, we propose a heterogeneous fault-tolerant aggregate signcryption scheme with an equality test (HFTASET).The scheme combines fault-tolerant and aggregate signcryption,whichnot onlymakes up for the deficiency oflow security of aggregate signature, but alsomakes up for the deficiency that aggregate signcryption cannot tolerateinvalid signature. The scheme supports one verification pass when all signcryptions are valid, and it supportsunbounded aggregation when the total number of signcryptions grows dynamically. In addition, this schemesupports heterogeneous equality test, and realizes the access control of private data in different cryptographicenvironments, so as to achieve flexibility in the application of our scheme and realize the function of quick searchof plaintext or ciphertext. Then, the security of HFTAS-ET is demonstrated by strict theoretical analysis. Finally, weconduct strict and standardized experimental operation and performance evaluation, which shows that the schemehas better performance.展开更多
Recent advances in wireless communications are diffusing into many new applications. The tiny sensor node, which consists of sensing, data processing and communicating components, led to the idea of sensor networks. A...Recent advances in wireless communications are diffusing into many new applications. The tiny sensor node, which consists of sensing, data processing and communicating components, led to the idea of sensor networks. A sensor network composed of a large number of sensor nodes that are densely deployed either inside the phenomenon or very close to it. The applications envisioned for sensor networks vary from monitoring inhospitable habitats and disaster areas to operating indoors for intrusion detection and equipment monitoring. In most cases the network designer would have little control over the exact deployment of the network. Nowadays Vehicular Networks are drawing lots of attention due to the wide variety of applications that they can provide. These applications include traffic monitoring, positioning, security etc. A lot of research work is being conducted to define the standard for vehicular communication. These include frequency allocation, standards for physical and link layers, routing algorithms, security issues and new applications. In this paper we discuss the disadvantages of the traffic monitoring by traditional methods and by using GPS equipped sensors. Then we propose a new routing protocol for a fixed topology containing both stationary and mobile nodes. We also try to optimize the energy of the sensor nodes. We simulate our routing algorithm in MATLAB and evaluate it for different possible cases.展开更多
Vehicular Social Networks(VSNs)is the bridge of social networks and Vehicular Ad-Hoc Networks(VANETs).VSNs are promising as they allow the exchange of various types of contents in large-scale through Vehicle-to-Vehicl...Vehicular Social Networks(VSNs)is the bridge of social networks and Vehicular Ad-Hoc Networks(VANETs).VSNs are promising as they allow the exchange of various types of contents in large-scale through Vehicle-to-Vehicle(V2V)and Vehicle-to-Infrastructure(V2I)communication protocols.Vehicular Named Data Networking(VNDN)is an auspicious communication paradigm for the challenging VSN environment since it can optimize content dissemination by decoupling contents from their physical locations.However,content dissemination and caching represent crucial challenges in VSNs due to short link lifetime and intermittent connectivity caused by vehicles’high mobility.Our aim with this paper is to improve content delivery and cache hit ratio,as well as decrease the transmission delay between end-users.In this regard,we propose a novel hybrid VNDN-VSN forwarding technique based on social communities,which allows requester vehicles to easily find the most suitable forwarder or producer among the community members in their neighborhood area.Furthermore,we introduce an effective caching mechanism by dividing the content store into two parts,one for community private contents and the second one for public contents.Simulation results show that our proposed forwarding technique can achieve a favorable performance compared with traditional VNDN,in terms of data delivery ratio,average data delivery delay,and cache hit ratio.展开更多
In wireless networks, jamming attacks are easy to launch and can significantly impact the network performance. The technique which localizes the jamming attacker is useful to address this problem. Some range-based loc...In wireless networks, jamming attacks are easy to launch and can significantly impact the network performance. The technique which localizes the jamming attacker is useful to address this problem. Some range-based localization schemes depend on the additional hardware of wireless nodes too much, and they can not work in resource-constrained wireless networks. Solutions in range-free localization are being pursued as a cost-effective alternative to more expensive range-based approaches.In this paper, we propose a novel range-free algorithm to localize the source of the attacker. We show that our approach only relies on the positions of each jammed or no-jammed node in the network, PSO algorithm is used to get the minimum covering circle of jammed positions and the circle center is the estimated jammer location. We compare our work with some existing range-free solutions via extensive simulations in two models, which are wireless sensor network (WSN) and vehicular ad hoc network (VANET) respectively. The experimental results suggest that our proposed algorithm achieves higher accuracy than the other solutions, and the localization error goes down with larger number of recorded jammed positions. In additional, when the recorded jammed positions are distributed in a specific constrained area, the localization error goes higher, we also propose an improved PSO algorithm to deal with this issue.展开更多
针对泛在互联车辆传感器网络的特点,提出了一种基于位置和定向扩散机制的泛在互联车辆传感器网络混合逻辑拓扑结构HLT-L&DD(hybrid logical topology based on location and directed diffusion mechanism),并给出了形成HLT-L&D...针对泛在互联车辆传感器网络的特点,提出了一种基于位置和定向扩散机制的泛在互联车辆传感器网络混合逻辑拓扑结构HLT-L&DD(hybrid logical topology based on location and directed diffusion mechanism),并给出了形成HLT-L&DD的控制方法。在HLT-L&DD中,各路边节点根据任务需求自定为簇首,以其位置信息作为其所在分簇的簇标识ID,并以定向扩散机制分布式启动分簇过程,逐跳吸纳跳数距离近的车辆节点加入本簇,不同的路边节点独立形成若干个分簇;各相邻分簇之间通过边沿节点的定向扩散机制实现彼此相联,最终将各独立分簇互联成一个完整的混合逻辑拓扑结构HLT-L&DD。HLT-L&DD是平面逻辑拓扑结构与层次型逻辑拓扑结构的混合拓扑结构,既便于车辆传感器网络节点的泛在自组成网、分区自治,也便于路边节点与其他诸如Internet等传统网络的泛在互联。理论分析和仿真结果表明,HLT-L&DD有利于减小泛在互联车辆传感器网络逻辑拓扑结构建立与动态维护的时间开销,以及提高网络的实时连通性,从而优化泛在互联车辆传感器网络的综合性能。展开更多
针对车载传感器网络节点移动速度快、网络拓扑结构不稳定、终端传感器节点能量不确定性等特点,提出了一种能量分级和位置预测的高效路由算法ERLP(Energy Rank and Location Prediction based routing)。该算法根据具有不同能量等级的节...针对车载传感器网络节点移动速度快、网络拓扑结构不稳定、终端传感器节点能量不确定性等特点,提出了一种能量分级和位置预测的高效路由算法ERLP(Energy Rank and Location Prediction based routing)。该算法根据具有不同能量等级的节点将消息传递距离的不同选择那些能量高的节点作为中转节点,并结合节点的分布区域和当前速度,尽量将多个消息副本传递给覆盖不同方向的节点,避免消息传递的局部性。仿真结果表明,与当前典型延迟容忍网络的路由算法相比,ERLP算法在传输成功率、平均延迟时间上具有较大提升。展开更多
implementation of wireless technologies based on the vehicular ad hoc sensor network (VASNET) may provide support for the search and rescue (SAR) team to operate effectively in natural disaster events, such as lan...implementation of wireless technologies based on the vehicular ad hoc sensor network (VASNET) may provide support for the search and rescue (SAR) team to operate effectively in natural disaster events, such as landslide, earthquake, flooding, and tsunami. The operations of SAR team are very challenging in such events due to the possible damages of the existing telecommunication infrastructures. The existing deployment of the cellular communications infrastructure may be partially or completely destroyed after the occurrence of these natural disasters. Thus, the current VASNET infrastructure must be able to support the infrastructure-less network by integrating other green wireless technologies that can benefit the SAR team, which can indirectly save more human lives and reduce the number of casualties. Therefore, the integration of green Internet of things (loT) and VASNET is proposed to form a heterogeneous framework for data dissemination in SAR operations. In addition, this paper also discusses the existing lot framework in disaster scenarios with future research direction for IoT using on any aspect, especially related to the natural disaster scenarios.展开更多
Vehicular Ad-Hoc Networks (VANET) is a research venue that promises for many useful applications. Most of these applications require a precise real-time positioning system for each vehicle. However, practically the ex...Vehicular Ad-Hoc Networks (VANET) is a research venue that promises for many useful applications. Most of these applications require a precise real-time positioning system for each vehicle. However, practically the existing tecniques are still not accurate and hence not suitable for some critical applications. In this paper, we will focus on the most critical ones which are the collision avoidance, and collision warning, or lane-tracking. Collision occurs when the distance between nearby vehicles decreases rapidly. Hence, an accurate and precise knowledge of the distance among each vehicle and all the surrounding vehicles has to be obtained to enable a realistic collision avoidance service. We propose to use the carbon nanotube network (CNT) integrated with other nano-devices that can provide accuracy in the order of millimeters. In this paper, theoretical investigations and mathematical formulations are presented. The obtained results show the effectiveness and accuracy of the proposed methodology.展开更多
基金supported in part by the Open Fund of Advanced Cryptography and System Security Key Laboratory of Sichuan Province under Grant SKLACSS-202102in part by the Intelligent Terminal Key Laboratory of Sichuan Province under Grant SCITLAB-1019.
文摘The vehicular sensor network (VSN) is an important part of intelligent transportation, which is used for real-timedetection and operation control of vehicles and real-time transmission of data and information. In the environmentofVSN, massive private data generated by vehicles are transmitted in open channels and used by other vehicle users,so it is crucial to maintain high transmission efficiency and high confidentiality of data. To deal with this problem, inthis paper, we propose a heterogeneous fault-tolerant aggregate signcryption scheme with an equality test (HFTASET).The scheme combines fault-tolerant and aggregate signcryption,whichnot onlymakes up for the deficiency oflow security of aggregate signature, but alsomakes up for the deficiency that aggregate signcryption cannot tolerateinvalid signature. The scheme supports one verification pass when all signcryptions are valid, and it supportsunbounded aggregation when the total number of signcryptions grows dynamically. In addition, this schemesupports heterogeneous equality test, and realizes the access control of private data in different cryptographicenvironments, so as to achieve flexibility in the application of our scheme and realize the function of quick searchof plaintext or ciphertext. Then, the security of HFTAS-ET is demonstrated by strict theoretical analysis. Finally, weconduct strict and standardized experimental operation and performance evaluation, which shows that the schemehas better performance.
文摘Recent advances in wireless communications are diffusing into many new applications. The tiny sensor node, which consists of sensing, data processing and communicating components, led to the idea of sensor networks. A sensor network composed of a large number of sensor nodes that are densely deployed either inside the phenomenon or very close to it. The applications envisioned for sensor networks vary from monitoring inhospitable habitats and disaster areas to operating indoors for intrusion detection and equipment monitoring. In most cases the network designer would have little control over the exact deployment of the network. Nowadays Vehicular Networks are drawing lots of attention due to the wide variety of applications that they can provide. These applications include traffic monitoring, positioning, security etc. A lot of research work is being conducted to define the standard for vehicular communication. These include frequency allocation, standards for physical and link layers, routing algorithms, security issues and new applications. In this paper we discuss the disadvantages of the traffic monitoring by traditional methods and by using GPS equipped sensors. Then we propose a new routing protocol for a fixed topology containing both stationary and mobile nodes. We also try to optimize the energy of the sensor nodes. We simulate our routing algorithm in MATLAB and evaluate it for different possible cases.
文摘Vehicular Social Networks(VSNs)is the bridge of social networks and Vehicular Ad-Hoc Networks(VANETs).VSNs are promising as they allow the exchange of various types of contents in large-scale through Vehicle-to-Vehicle(V2V)and Vehicle-to-Infrastructure(V2I)communication protocols.Vehicular Named Data Networking(VNDN)is an auspicious communication paradigm for the challenging VSN environment since it can optimize content dissemination by decoupling contents from their physical locations.However,content dissemination and caching represent crucial challenges in VSNs due to short link lifetime and intermittent connectivity caused by vehicles’high mobility.Our aim with this paper is to improve content delivery and cache hit ratio,as well as decrease the transmission delay between end-users.In this regard,we propose a novel hybrid VNDN-VSN forwarding technique based on social communities,which allows requester vehicles to easily find the most suitable forwarder or producer among the community members in their neighborhood area.Furthermore,we introduce an effective caching mechanism by dividing the content store into two parts,one for community private contents and the second one for public contents.Simulation results show that our proposed forwarding technique can achieve a favorable performance compared with traditional VNDN,in terms of data delivery ratio,average data delivery delay,and cache hit ratio.
文摘In wireless networks, jamming attacks are easy to launch and can significantly impact the network performance. The technique which localizes the jamming attacker is useful to address this problem. Some range-based localization schemes depend on the additional hardware of wireless nodes too much, and they can not work in resource-constrained wireless networks. Solutions in range-free localization are being pursued as a cost-effective alternative to more expensive range-based approaches.In this paper, we propose a novel range-free algorithm to localize the source of the attacker. We show that our approach only relies on the positions of each jammed or no-jammed node in the network, PSO algorithm is used to get the minimum covering circle of jammed positions and the circle center is the estimated jammer location. We compare our work with some existing range-free solutions via extensive simulations in two models, which are wireless sensor network (WSN) and vehicular ad hoc network (VANET) respectively. The experimental results suggest that our proposed algorithm achieves higher accuracy than the other solutions, and the localization error goes down with larger number of recorded jammed positions. In additional, when the recorded jammed positions are distributed in a specific constrained area, the localization error goes higher, we also propose an improved PSO algorithm to deal with this issue.
文摘针对泛在互联车辆传感器网络的特点,提出了一种基于位置和定向扩散机制的泛在互联车辆传感器网络混合逻辑拓扑结构HLT-L&DD(hybrid logical topology based on location and directed diffusion mechanism),并给出了形成HLT-L&DD的控制方法。在HLT-L&DD中,各路边节点根据任务需求自定为簇首,以其位置信息作为其所在分簇的簇标识ID,并以定向扩散机制分布式启动分簇过程,逐跳吸纳跳数距离近的车辆节点加入本簇,不同的路边节点独立形成若干个分簇;各相邻分簇之间通过边沿节点的定向扩散机制实现彼此相联,最终将各独立分簇互联成一个完整的混合逻辑拓扑结构HLT-L&DD。HLT-L&DD是平面逻辑拓扑结构与层次型逻辑拓扑结构的混合拓扑结构,既便于车辆传感器网络节点的泛在自组成网、分区自治,也便于路边节点与其他诸如Internet等传统网络的泛在互联。理论分析和仿真结果表明,HLT-L&DD有利于减小泛在互联车辆传感器网络逻辑拓扑结构建立与动态维护的时间开销,以及提高网络的实时连通性,从而优化泛在互联车辆传感器网络的综合性能。
文摘针对车载传感器网络节点移动速度快、网络拓扑结构不稳定、终端传感器节点能量不确定性等特点,提出了一种能量分级和位置预测的高效路由算法ERLP(Energy Rank and Location Prediction based routing)。该算法根据具有不同能量等级的节点将消息传递距离的不同选择那些能量高的节点作为中转节点,并结合节点的分布区域和当前速度,尽量将多个消息副本传递给覆盖不同方向的节点,避免消息传递的局部性。仿真结果表明,与当前典型延迟容忍网络的路由算法相比,ERLP算法在传输成功率、平均延迟时间上具有较大提升。
文摘implementation of wireless technologies based on the vehicular ad hoc sensor network (VASNET) may provide support for the search and rescue (SAR) team to operate effectively in natural disaster events, such as landslide, earthquake, flooding, and tsunami. The operations of SAR team are very challenging in such events due to the possible damages of the existing telecommunication infrastructures. The existing deployment of the cellular communications infrastructure may be partially or completely destroyed after the occurrence of these natural disasters. Thus, the current VASNET infrastructure must be able to support the infrastructure-less network by integrating other green wireless technologies that can benefit the SAR team, which can indirectly save more human lives and reduce the number of casualties. Therefore, the integration of green Internet of things (loT) and VASNET is proposed to form a heterogeneous framework for data dissemination in SAR operations. In addition, this paper also discusses the existing lot framework in disaster scenarios with future research direction for IoT using on any aspect, especially related to the natural disaster scenarios.
文摘Vehicular Ad-Hoc Networks (VANET) is a research venue that promises for many useful applications. Most of these applications require a precise real-time positioning system for each vehicle. However, practically the existing tecniques are still not accurate and hence not suitable for some critical applications. In this paper, we will focus on the most critical ones which are the collision avoidance, and collision warning, or lane-tracking. Collision occurs when the distance between nearby vehicles decreases rapidly. Hence, an accurate and precise knowledge of the distance among each vehicle and all the surrounding vehicles has to be obtained to enable a realistic collision avoidance service. We propose to use the carbon nanotube network (CNT) integrated with other nano-devices that can provide accuracy in the order of millimeters. In this paper, theoretical investigations and mathematical formulations are presented. The obtained results show the effectiveness and accuracy of the proposed methodology.