This paper analyzed the existing methods of wave measurement, and described the advantages of GPS applied in measuring the wave. The equations of absolute velocity estimation were discussed, focusing on two methods wi...This paper analyzed the existing methods of wave measurement, and described the advantages of GPS applied in measuring the wave. The equations of absolute velocity estimation were discussed, focusing on two methods with Doppler shill. The error sources and their effect on velocity estimation were analyzed. Then, some tests were carried on to simulate dynamic velocity determination using static data Based on the high-frequency carrier-phase derived Doppler observations, the velocity has been estimated to the precision of 1 cm/s or so, even to the mm/s level. And with the receiver generated Doppler measurements, the precision can reach 3 - 15 cm/s.展开更多
By analyzing the signal model of stepped-frequency waveform, a novel method for velocity measurement is proposed. The method is based on Doppler frequency difference which is achieved by using Hough transform. As the ...By analyzing the signal model of stepped-frequency waveform, a novel method for velocity measurement is proposed. The method is based on Doppler frequency difference which is achieved by using Hough transform. As the estimated velocity is inversely proportional to the frequency step size instead of the carrier frequency of the transmitted signal as the pulse-Doppler (PD) processing, the new algorithm can achieve much wider unambiguous velocity range. Furthermore, non-coherent integration of the sub-pulses with different carrier frequencies can be implemented by Hough trans- form to improve the anti-noise performance. Besides, field experimental results show that the high range resolution profile (HRRP) of a bullet with high speed can be reconstructed correctly without distortion.展开更多
Radial velocity estimation used in wide-band radar systems is investigated.By analyzing the signal of cross-correlation output of adjacent echoes,it is found that the frequency and phase of the cross-correlation outpu...Radial velocity estimation used in wide-band radar systems is investigated.By analyzing the signal of cross-correlation output of adjacent echoes,it is found that the frequency and phase of the cross-correlation output are related to the target’s radial velocity.Since the precision of the phase estimation is higher than that of the frequency,a phase-based velocity estimator is proposed.However,the ambiguity problem exists in the phase estimators,and thus the estimation of the cross-correlation of adjacent echoes(CCAE)is used to calculate the ambiguity number.The root-mean-square-error(RMSE)of the proposed estimator is derived.Simulation results show that the performance of the proposed method is better than that of the frequency-based estimator.展开更多
Estimation of S-wave velocity using logging data has mainly been performed for sandstone, mudstone and oil and gas strata, while its application to hydrate reservoirs has been largely overlooked. In this paper we pres...Estimation of S-wave velocity using logging data has mainly been performed for sandstone, mudstone and oil and gas strata, while its application to hydrate reservoirs has been largely overlooked. In this paper we present petxophysical methods to estimate the S-wave velocity of hydrate reservoirs with the P-wave velocity and the density as constraints. The three models used in this paper are an equivalent model (MBGL), a three-phase model (TPBE), and a thermo-elasticity model (TEM). The MBGL model can effectively describe the internal relationship among the components of the rock, and the estimated P-wave velocities are in good agreement with the measured data (2.8% error). However, in the TPBE model, the solid, liquid and gas phases axe considered to be independent of each other, and the estimation results are relatively low (46.6% error). The TEM model is based on the sensitivity of the gas hydrate to temperature and pressure, and the accuracy of the estimation results is also high (3.6% error). Before the estimation, the occurrence patterns of hydrates in the Shenhu area were examined, and occurrence state one (the hydrate is in solid form in the reservoir) was selected for analysis. By using the known P-wave velocity and density as constraints, a reasonable S-wave velocity value (ranging from 400 to 1100 m s 1 and for a hydrate layer of 1100 m s 1) can be obtained through multiple iterations. These methods and results provide new data and technical support for further research on hydrates and other geological features in the Shenhu area.展开更多
This paper proposes an advanced method for estimating numerous parameters in a wind-energy-conversion system with high precision,especially in a transient state,including the rotation speed and mechanical torque of th...This paper proposes an advanced method for estimating numerous parameters in a wind-energy-conversion system with high precision,especially in a transient state,including the rotation speed and mechanical torque of the turbine as well as wind velocity.The suggested approach is designed into two parts.First,a fourth-order Luenberger observer is proposed to take into account the significant fluctuations of the mechanical torque that can be caused by wind gusts.This observer provides an accurate estimate of speed and mechanical torque in all weather conditions and especially when the wind is gusting.At the same time,the wind velocity is calculated using the Luenberger observer outputs and a model of the mechanical power generated by the turbine.Second,these estimated parameters are exploited as input in a maximum-power-point tracking(MPPT)algorithm using the tip-speed ratio(TSR)to improve the sensorless strategy control.Simulation results were performed using MATLAB®/Simulink®for both wind gust and real wind profiles.We have verified that for wind gusts with jumps ranging from 3 to 7 m/s,the new observer manages to better follow the rotation speed and the torque of the turbine compared to a usual observer.In addition,we demonstrated that by applying the proposed estimator in the improved TSR-MPPT strategy,it is possible to extract 3.3%more energy compared to traditional approaches.展开更多
Millimeter-wave(mmWave)radar communication has emerged as an important technique for future wireless systems.However,the interference between the radar signal and communication data is the main issue that should be co...Millimeter-wave(mmWave)radar communication has emerged as an important technique for future wireless systems.However,the interference between the radar signal and communication data is the main issue that should be considered for the joint radar communication system.In this paper,a co-sharing waveform(CSW)is proposed to achieve communication and radar sensing simultaneously.To eliminate the co-interference between the communication and sensing signal,signal splitting and processing methods for communication data demodulation and radar signal processing are given respectively.Simulation results show that the bit error rate(BER)of CSW is close to that of the pure communication waveform.Moreover,the proposed CSW can achieve better performance than the existing waveforms in terms of range and velocity estimation.展开更多
In the railway industry, re-adhesion control plays an important role in attenuating the slip occurrence due to the low adhesion condition in the wheel-rail inter- action. Braking and traction forces depend on the norm...In the railway industry, re-adhesion control plays an important role in attenuating the slip occurrence due to the low adhesion condition in the wheel-rail inter- action. Braking and traction forces depend on the normal force and adhesion coefficient at the wheel-rail contact area. Due to the restrictions on controlling normal force, the only way to increase the tractive or braking effect is to maximize the adhesion coefficient. Through efficient uti- lization of adhesion, it is also possible to avoid wheel-rail wear and minimize the energy consumption. The adhesion between wheel and rail is a highly nonlinear function of many parameters like environmental conditions, railway vehicle speed and slip velocity. To estimate these unknown parameters accurately is a very hard and competitive challenge. The robust adaptive control strategy presented in this paper is not only able to suppress the wheel slip in time, but also maximize the adhesion utilization perfor- mance after re-adhesion process even if the wheel-rail contact mechanism exhibits significant adhesion uncer- tainties and/or nonlinearities. Using an optimal slip velocity seeking algorithm, the proposed strategy provides a satisfactory slip velocity tracking ability, which was demonstrated able to realize the desired slip velocity without experiencing any instability problem. The control torque of the traction motor was regulated continuously to drive the railway vehicle in the neighborhood of the opti- mal adhesion point and guarantee the best traction capacity after re-adhesion process by making the railway vehicle operate away from the unstable region. The results obtained from the adaptive approach based on the second- order sliding mode observer have been confirmed through theoretical analysis and numerical simulation conducted in MATLAB and Simulink with a full traction model under various wheel-rail conditions.展开更多
Objective We aimed to clarify the association between estimated pulse wave velocity(ePWV)and the changes in ePWV with all-cause mortality among middle-aged and elderly Chinese.Methods Data were obtained from the China...Objective We aimed to clarify the association between estimated pulse wave velocity(ePWV)and the changes in ePWV with all-cause mortality among middle-aged and elderly Chinese.Methods Data were obtained from the China Health and Retirement Longitudinal Study(CHARLS)from 2011-2018.The ePWV was calculated using an equation that included age and mean blood pressure(MBP).The ΔePWV was assessed as the difference in ePWV between the first two waves.Cox proportional hazard models were used to determine the association between ePWV and ΔePWV with all-cause mortality after adjustment for potential confounders.Results Of 13,116 participants during a median follow-up of 7.0 years,1,356 deaths occurred.An increased ePWV was independently associated with all-cause mortality.The hazard ratio[95% confidence interval(CI)]for participants from the 1^(st)-4^(th) quartile groups was 1.00,1.69(1.31-2.18),3.09(2.44-3.91),and 8.54(6.78-10.75),respectively.Each standard deviation(SD)increment of ePWV increased the risk of all-cause mortality by 132%.Furthermore,theΔePWV was significantly associated with a 1.28-fold(95%CI,1.18-1.38)risk of all-cause mortality per SD increment.Conclusion This cohort study provided novel evidence from a Chinese population that an increased ePWV or progression of the ePWV was independently associated with all-cause mortality,which highlighted the importance of mitigating ePWV progression in clinical practice.展开更多
When there is Doppler ambiguity number mutation,keystone formatting is no longer valid because of integration performance deterioration and false velocity estimation.A novel keystone formatting method based on non-bas...When there is Doppler ambiguity number mutation,keystone formatting is no longer valid because of integration performance deterioration and false velocity estimation.A novel keystone formatting method based on non-baseband interpolation is presented.It has a different half blind velocity range comparing with normal keystone formatting.Furthermore,there is non-superposition between half-blind-velocity-range of keystone formatting based on baseband and that of non-baseband interpolation.So a synthesizing keystone formatting is proposed to avoid the half-blind-velocity effect.Simulation results of the proposed method show that integration deterioration and velocity estimation falsity can be eliminated effectively.展开更多
Laser Speckle Contrast Imaging(LSCI)plays an important role in studying blood flow,but suffers from limited penetration depth of light in turbid tissue.The strong scattering of tissue obviously reduces the image contr...Laser Speckle Contrast Imaging(LSCI)plays an important role in studying blood flow,but suffers from limited penetration depth of light in turbid tissue.The strong scattering of tissue obviously reduces the image contrast which decreases the sensitivity to flow velocity.Some image processing or optical clearing methods have been proposed to lessen the deficiency,but quantitative assessment of improvement is seldom given.In this study,LSCI was applied to monitor the blood flow through a capillary embedded within various tissue phantoms at depths of 0.25,0.45,0.65,0.85 and 1.05 mm,and the flow velocity in capillary was controllable from 0 to 4mm/s.Here,glycerol,a common optical clearing agent,was mixed with Intralipid at different volume ratio to make the reduced scattering coefficient of tissue phantom decrease from 13.00 to 0.50 cm−1.The quantitative analysis demonstrates that the optical clearing method can obviously enhance the image contrast,imaging depth,and sensitivity to blood flow velocity.Comparing the Laser Speckle Contrast Analysis methods and the optical clearing method,we find that for typical turbid tissue,the sensitivity to velocity estimated by the Laser Speckle Temporal Contrast Analysis(LSTCA)is twice of that by the Laser Speckle Spatial Contrast Analysis(LSSCA);while the sensitivity to velocity estimated by using the two analysis methods has a 10-fold increase,respectively,if addition of glycerol makes the reduced scattering coefficient of tissue phantom decrease by 30%.Combining the LSTCA and the optical clearing method,the sensitivity to flow velocity will be further enhanced.展开更多
Ground penetrating radar (GPR) is a remote sensing technique used to obtain information on subsurface features from data collected over the surface. We propose an automatic algorithm for estimating object depth using...Ground penetrating radar (GPR) is a remote sensing technique used to obtain information on subsurface features from data collected over the surface. We propose an automatic algorithm for estimating object depth using f-k migration and velocity scanning methods in a homogeneous medium. To improve the accuracy of the algorithm, the formula used to calculate the GPR valid lateral aperture is also presented. Experimental results show that the relative estimating error of depth is as low as 5% in a homogeneous medium.展开更多
The star identification algorithm usually identifies stars by angular distance matching.However,under high dynamic conditions,the rolling shutter effect distorts the angular distances between the measured and true sta...The star identification algorithm usually identifies stars by angular distance matching.However,under high dynamic conditions,the rolling shutter effect distorts the angular distances between the measured and true star positions,leading to plethoric false matches and requiring complex and time-consuming verification for star identification.Low identification rate hinders the application of low-noise and cost-effective rolling shutter image sensors.In this work,we first study a rolling shutter distortion model of angular distances between stars,and then propose a novel three-stage star identification algorithm to identify distorted star images captured by the rolling shutter star sensor.The first stage uses a modified grid algorithm with adaptive error tolerance and an expanded pattern database to efficiently eliminate spurious matches.The second stage performs angular velocity estimation based on Hough transform to verify the matches that follow the same distortion pattern.The third stage applies a rolling shutter error correction method for further verification.Both the simulation and night sky image test demonstrate the effectiveness and efficiency of our algorithm under high dynamic conditions.The accuracy of angular velocity estimation method by Hough transform is evaluated and the root mean square error is below 0.5(°)/s.Our algorithm achieves a 95.7% identification rate at an angular velocity of 10(°)/s,which is much higher than traditional algorithms.展开更多
In passive radars, coherent integration is an essential method to achieve processing gain for target detection. The cross ambiguity function(CAF) and the method based on matched filtering are the most common approache...In passive radars, coherent integration is an essential method to achieve processing gain for target detection. The cross ambiguity function(CAF) and the method based on matched filtering are the most common approaches. The method based on matched filtering is an approximation to CAF and the procedure is:(1) divide the signal into snapshots;(2) perform matched filtering on each snapshot;(3) perform fast Fourier transform(FFT) across the snapshots. The matched filtering method is computationally affordable and can offer savings of an order of 1000 times in execution speed over that of CAF. However, matched filtering suffers from severe energy loss for high speed targets. In this paper we concentrate mainly on the matched filtering method and we use keystone transform to rectify range migration. Several factors affecting the performance of coherent integration are discussed based on the matched filtering method and keystone transform. Modified methods are introduced to improve the performance by analyzing the impacts of mismatching, precision of the keystone transform, and discretization. The modified discrete chirp Fourier transform(MDCFT) is adopted to rectify the Doppler expansion in a multi-target scenario. A novel velocity estimation method is proposed, and an extended processing scheme presented. Simulations show that the proposed algorithms improve the performance of matched filtering for high speed targets.展开更多
The BeiDou Navigation Satellite System(BDS)provides global Positioning,Velocity,And Timing(PVT)services that are widely used in various areas.The BDS satellites frequently need the orbit maneuvers due to various pertu...The BeiDou Navigation Satellite System(BDS)provides global Positioning,Velocity,And Timing(PVT)services that are widely used in various areas.The BDS satellites frequently need the orbit maneuvers due to various perturbations to keep satellites in their designed positions.During these maneuvers,PVT services may be abnormal if the data from a maneuvering satellite is used.In this paper we developed an approach to recover the abnormal PVT services.By using BDS observations from multiple tracking stations,the orbital errors of a maneuvering satellite can be in real time obtained and corrected,thereby avoiding any influence on the performance of PVT services.The tests show that the average precision of position,velocity and timing services are improved by 0.8 m,0.1 mm/s and 0.16 ns,respectively,using the developed orbital maneuver recovery approach.In addition,the approach can also be used for the orbital maneuver detection and monitoring.展开更多
Preliminary results of the wind velocity estimation using the Maximum Entropy Method (MEM) to MU radar observation data sets are presented. The comparison of the results from the periodogram method and the MEM shows t...Preliminary results of the wind velocity estimation using the Maximum Entropy Method (MEM) to MU radar observation data sets are presented. The comparison of the results from the periodogram method and the MEM shows that the MEM estimation is reliable, and has higher accuracy, resolution and detectability than the estimation from periodogram method. The high accuracy power spectrum obtained by the MEM is very useful to studying the atmospheric turbulence structure. However. the MEM needs the longer computing time for obtaining the high accuracy spectrum. Particularly, the estimation of MEM will bring serious devia- tion at lower signal-to-noise ratio.展开更多
Feedback flow information is of significance to enable underwater locomotion controllers with higher adaptability and efficiency within varying environments. Inspired from fish sensing their external flow via near-bod...Feedback flow information is of significance to enable underwater locomotion controllers with higher adaptability and efficiency within varying environments. Inspired from fish sensing their external flow via near-body pressure, a computational scheme is proposed and developed in this paper. In conjunction with the scheme, Computational Fluid Dynamics (CFD) is employed to study the bio-inspired fish swimming hydrodynamics. The spatial distribution and temporal variation of the near-body pressure of fish are studied over the whole computational domain. Furthermore, a filtering algorithm is designed and implemented to fuse near-body pressure of one or multiple points for the estimation on the external flow. The simulation results demonstrate that the proposed computational scheme and its corresponding algorithm are both effective to predict the inlet flow velocity by using near-body pressure at distributed spatial points.展开更多
Multiscale strategies are very important in the successful application of waveform-based velocity inversion. The strategy that sequentially preceeds from long to short scale of velocity model, has been well developed ...Multiscale strategies are very important in the successful application of waveform-based velocity inversion. The strategy that sequentially preceeds from long to short scale of velocity model, has been well developed in full waveform inversion (FWI) to solve the local mininum problem. In contrast, it's not well understood in the image-domain waveform tomography (IWT), which back-projects incoherent waveform components of the common image gather into velocity updates. IWT is less prone to local minimum problem but tends to build long-scale model with low resolution. In order to build both long- and short-scale model by IWT, we discuss several multiscale strategies restricted in the image domain. The strategies include model reparameterization, objective function switching and gradient rescaling. Numerical tests on Marmsousi model and real data demonstrate that our proposed multiscale IWT is effective in buidling velocity model with wide wavenumber spectrum.展开更多
Hybrid approaches such as combining video data with pure physics-based simulation have been popular in the recent decade for computer graphics. The key motivation is to clearly retain salient advantages from both data...Hybrid approaches such as combining video data with pure physics-based simulation have been popular in the recent decade for computer graphics. The key motivation is to clearly retain salient advantages from both data-driven method and model-centric numerical simulation, while overcoming certain difficulties of both. The Eulerian method, which has been widely employed in flow simulation, stores variables such as velocity and density on regular Cartesian grids, thereby it could be associated with (volumetric) video data on the same domain. This paper proposes a novel method for flow simulation, which is tightly coupling video-based reconstruction with physically-based simulation and making use of meaningful physical attributes during re-simulation. First, we reconstruct the density field from a single-view video. Second, we estimate the velocity field using the reconstructed density field as prior. In the iterative process, the pressure projection can be treated as a physical constraint and the results of each step are corrected by obtained velocity field in the Eulerian framework. Third, we use the reconstructed density field and velocity field to guide the Eulerian simulation with anticipated new results. Through the guidance of video data, we can produce new flows that closely match with the real scene exhibited in data acquisition. Moreover, in the multigrid Eulerian simulation, we can generate new visual effects which cannot be created from raw video acquisition, with a goal of easily producing many more visually interesting results and respecting true physical attributes at the same time. We demonstrate salient advantages of our hybrid method with a variety of animation examples.展开更多
Video-based vibration measurement is a cost-effective way for remote monitoring the health conditions of transportation and other civil structures, especially for situations where accessibility is restricted and does ...Video-based vibration measurement is a cost-effective way for remote monitoring the health conditions of transportation and other civil structures, especially for situations where accessibility is restricted and does not allow installation of conventional monitoring devices. Besides, video-based system is global measurement. The technical basis of video-based remote vibration measurement system is digital image analysis. Comparison of the images allow the field of motion to be accurately delineated. Such information is important to understand the structure behaviors including the motion and strain distribution. This paper presents system and analyses to monitor the vibration velocity and displacement field. The performance is demonstrated on a testbed of model building. Three different methods (i.e., frame difference method, particle image velocimetry, and optical Flow Method) are utilized to analyze the image sequences to extract the feature of motion. The Performance is validated using accelerometer data. The results indicate that all three methods can estimate the velocity field of the model building, although the results can be affected by factors such as background noise and environmental interference. Optical flow method achieved the best performance among these three methods studied. With further refinement of system hardware and image processing software, it will be developed into a remote video based monitoring system for structural health monitoring of transportation infrastructure to assist the diagnoses of its health conditions.展开更多
基金supported by the Key Laboratory of Marine Hydrocarbon Resources and Environmental Geology(MRE201233)Key Laboratory of Surveying and Mapping Technology on Island and ReefState Bureau of Surveying and Mapping(2012B04)
文摘This paper analyzed the existing methods of wave measurement, and described the advantages of GPS applied in measuring the wave. The equations of absolute velocity estimation were discussed, focusing on two methods with Doppler shill. The error sources and their effect on velocity estimation were analyzed. Then, some tests were carried on to simulate dynamic velocity determination using static data Based on the high-frequency carrier-phase derived Doppler observations, the velocity has been estimated to the precision of 1 cm/s or so, even to the mm/s level. And with the receiver generated Doppler measurements, the precision can reach 3 - 15 cm/s.
基金Supported by the Fund of National Defense Industry Innovative Team(231)
文摘By analyzing the signal model of stepped-frequency waveform, a novel method for velocity measurement is proposed. The method is based on Doppler frequency difference which is achieved by using Hough transform. As the estimated velocity is inversely proportional to the frequency step size instead of the carrier frequency of the transmitted signal as the pulse-Doppler (PD) processing, the new algorithm can achieve much wider unambiguous velocity range. Furthermore, non-coherent integration of the sub-pulses with different carrier frequencies can be implemented by Hough trans- form to improve the anti-noise performance. Besides, field experimental results show that the high range resolution profile (HRRP) of a bullet with high speed can be reconstructed correctly without distortion.
基金the National Natural Science Foundation of China(61471012).
文摘Radial velocity estimation used in wide-band radar systems is investigated.By analyzing the signal of cross-correlation output of adjacent echoes,it is found that the frequency and phase of the cross-correlation output are related to the target’s radial velocity.Since the precision of the phase estimation is higher than that of the frequency,a phase-based velocity estimator is proposed.However,the ambiguity problem exists in the phase estimators,and thus the estimation of the cross-correlation of adjacent echoes(CCAE)is used to calculate the ambiguity number.The root-mean-square-error(RMSE)of the proposed estimator is derived.Simulation results show that the performance of the proposed method is better than that of the frequency-based estimator.
基金supported by the National Natural Science Foundation of China(Nos.41304096 and 41176077)the National Science and Technology Major Project of China(No.2016ZX05024-001-002)+2 种基金the National High-tech R&D Program of China(863 ProgramNo.2013AA0925 01)the Fundamental Research Funds for the Central Universities(No.201762019)
文摘Estimation of S-wave velocity using logging data has mainly been performed for sandstone, mudstone and oil and gas strata, while its application to hydrate reservoirs has been largely overlooked. In this paper we present petxophysical methods to estimate the S-wave velocity of hydrate reservoirs with the P-wave velocity and the density as constraints. The three models used in this paper are an equivalent model (MBGL), a three-phase model (TPBE), and a thermo-elasticity model (TEM). The MBGL model can effectively describe the internal relationship among the components of the rock, and the estimated P-wave velocities are in good agreement with the measured data (2.8% error). However, in the TPBE model, the solid, liquid and gas phases axe considered to be independent of each other, and the estimation results are relatively low (46.6% error). The TEM model is based on the sensitivity of the gas hydrate to temperature and pressure, and the accuracy of the estimation results is also high (3.6% error). Before the estimation, the occurrence patterns of hydrates in the Shenhu area were examined, and occurrence state one (the hydrate is in solid form in the reservoir) was selected for analysis. By using the known P-wave velocity and density as constraints, a reasonable S-wave velocity value (ranging from 400 to 1100 m s 1 and for a hydrate layer of 1100 m s 1) can be obtained through multiple iterations. These methods and results provide new data and technical support for further research on hydrates and other geological features in the Shenhu area.
基金co-financed by the Interreg Atlantic Area Program through the European Regional Development Fund and the PORTOS project.
文摘This paper proposes an advanced method for estimating numerous parameters in a wind-energy-conversion system with high precision,especially in a transient state,including the rotation speed and mechanical torque of the turbine as well as wind velocity.The suggested approach is designed into two parts.First,a fourth-order Luenberger observer is proposed to take into account the significant fluctuations of the mechanical torque that can be caused by wind gusts.This observer provides an accurate estimate of speed and mechanical torque in all weather conditions and especially when the wind is gusting.At the same time,the wind velocity is calculated using the Luenberger observer outputs and a model of the mechanical power generated by the turbine.Second,these estimated parameters are exploited as input in a maximum-power-point tracking(MPPT)algorithm using the tip-speed ratio(TSR)to improve the sensorless strategy control.Simulation results were performed using MATLAB®/Simulink®for both wind gust and real wind profiles.We have verified that for wind gusts with jumps ranging from 3 to 7 m/s,the new observer manages to better follow the rotation speed and the torque of the turbine compared to a usual observer.In addition,we demonstrated that by applying the proposed estimator in the improved TSR-MPPT strategy,it is possible to extract 3.3%more energy compared to traditional approaches.
基金supported by the National Natural Science Foundation of China(No.62171052 and No.61971054)the Fundamental Research Funds for the Central Universities(No.24820232023YQTD01).
文摘Millimeter-wave(mmWave)radar communication has emerged as an important technique for future wireless systems.However,the interference between the radar signal and communication data is the main issue that should be considered for the joint radar communication system.In this paper,a co-sharing waveform(CSW)is proposed to achieve communication and radar sensing simultaneously.To eliminate the co-interference between the communication and sensing signal,signal splitting and processing methods for communication data demodulation and radar signal processing are given respectively.Simulation results show that the bit error rate(BER)of CSW is close to that of the pure communication waveform.Moreover,the proposed CSW can achieve better performance than the existing waveforms in terms of range and velocity estimation.
文摘In the railway industry, re-adhesion control plays an important role in attenuating the slip occurrence due to the low adhesion condition in the wheel-rail inter- action. Braking and traction forces depend on the normal force and adhesion coefficient at the wheel-rail contact area. Due to the restrictions on controlling normal force, the only way to increase the tractive or braking effect is to maximize the adhesion coefficient. Through efficient uti- lization of adhesion, it is also possible to avoid wheel-rail wear and minimize the energy consumption. The adhesion between wheel and rail is a highly nonlinear function of many parameters like environmental conditions, railway vehicle speed and slip velocity. To estimate these unknown parameters accurately is a very hard and competitive challenge. The robust adaptive control strategy presented in this paper is not only able to suppress the wheel slip in time, but also maximize the adhesion utilization perfor- mance after re-adhesion process even if the wheel-rail contact mechanism exhibits significant adhesion uncer- tainties and/or nonlinearities. Using an optimal slip velocity seeking algorithm, the proposed strategy provides a satisfactory slip velocity tracking ability, which was demonstrated able to realize the desired slip velocity without experiencing any instability problem. The control torque of the traction motor was regulated continuously to drive the railway vehicle in the neighborhood of the opti- mal adhesion point and guarantee the best traction capacity after re-adhesion process by making the railway vehicle operate away from the unstable region. The results obtained from the adaptive approach based on the second- order sliding mode observer have been confirmed through theoretical analysis and numerical simulation conducted in MATLAB and Simulink with a full traction model under various wheel-rail conditions.
基金supported by the National Key R&D Program of China[2021YFC2500500]Chinese Academy of Medical Sciences(CAMS)Innovation Fund for Medical Sciences[2021-I2M-1-010]+2 种基金the National Natural Science Foundation of China[82073658]the Taikang Yicai Public Health and Epidemic Control Fund[TKYC-GW-2020]the Research Unit of Prospective Cohort of Cardiovascular Diseases and Cancers of the Chinese Academy of Medical Sciences[2019RU038]。
文摘Objective We aimed to clarify the association between estimated pulse wave velocity(ePWV)and the changes in ePWV with all-cause mortality among middle-aged and elderly Chinese.Methods Data were obtained from the China Health and Retirement Longitudinal Study(CHARLS)from 2011-2018.The ePWV was calculated using an equation that included age and mean blood pressure(MBP).The ΔePWV was assessed as the difference in ePWV between the first two waves.Cox proportional hazard models were used to determine the association between ePWV and ΔePWV with all-cause mortality after adjustment for potential confounders.Results Of 13,116 participants during a median follow-up of 7.0 years,1,356 deaths occurred.An increased ePWV was independently associated with all-cause mortality.The hazard ratio[95% confidence interval(CI)]for participants from the 1^(st)-4^(th) quartile groups was 1.00,1.69(1.31-2.18),3.09(2.44-3.91),and 8.54(6.78-10.75),respectively.Each standard deviation(SD)increment of ePWV increased the risk of all-cause mortality by 132%.Furthermore,theΔePWV was significantly associated with a 1.28-fold(95%CI,1.18-1.38)risk of all-cause mortality per SD increment.Conclusion This cohort study provided novel evidence from a Chinese population that an increased ePWV or progression of the ePWV was independently associated with all-cause mortality,which highlighted the importance of mitigating ePWV progression in clinical practice.
基金supported by the National Natural Science Foundation of China(60871070)
文摘When there is Doppler ambiguity number mutation,keystone formatting is no longer valid because of integration performance deterioration and false velocity estimation.A novel keystone formatting method based on non-baseband interpolation is presented.It has a different half blind velocity range comparing with normal keystone formatting.Furthermore,there is non-superposition between half-blind-velocity-range of keystone formatting based on baseband and that of non-baseband interpolation.So a synthesizing keystone formatting is proposed to avoid the half-blind-velocity effect.Simulation results of the proposed method show that integration deterioration and velocity estimation falsity can be eliminated effectively.
基金supported by the National Natural Science Foundation(Grant Nos.30770552,60828009 and 30911120074)of China.
文摘Laser Speckle Contrast Imaging(LSCI)plays an important role in studying blood flow,but suffers from limited penetration depth of light in turbid tissue.The strong scattering of tissue obviously reduces the image contrast which decreases the sensitivity to flow velocity.Some image processing or optical clearing methods have been proposed to lessen the deficiency,but quantitative assessment of improvement is seldom given.In this study,LSCI was applied to monitor the blood flow through a capillary embedded within various tissue phantoms at depths of 0.25,0.45,0.65,0.85 and 1.05 mm,and the flow velocity in capillary was controllable from 0 to 4mm/s.Here,glycerol,a common optical clearing agent,was mixed with Intralipid at different volume ratio to make the reduced scattering coefficient of tissue phantom decrease from 13.00 to 0.50 cm−1.The quantitative analysis demonstrates that the optical clearing method can obviously enhance the image contrast,imaging depth,and sensitivity to blood flow velocity.Comparing the Laser Speckle Contrast Analysis methods and the optical clearing method,we find that for typical turbid tissue,the sensitivity to velocity estimated by the Laser Speckle Temporal Contrast Analysis(LSTCA)is twice of that by the Laser Speckle Spatial Contrast Analysis(LSSCA);while the sensitivity to velocity estimated by using the two analysis methods has a 10-fold increase,respectively,if addition of glycerol makes the reduced scattering coefficient of tissue phantom decrease by 30%.Combining the LSTCA and the optical clearing method,the sensitivity to flow velocity will be further enhanced.
文摘Ground penetrating radar (GPR) is a remote sensing technique used to obtain information on subsurface features from data collected over the surface. We propose an automatic algorithm for estimating object depth using f-k migration and velocity scanning methods in a homogeneous medium. To improve the accuracy of the algorithm, the formula used to calculate the GPR valid lateral aperture is also presented. Experimental results show that the relative estimating error of depth is as low as 5% in a homogeneous medium.
基金supported by the National Key Research and Development Program of China(No.2019YFA0706002).
文摘The star identification algorithm usually identifies stars by angular distance matching.However,under high dynamic conditions,the rolling shutter effect distorts the angular distances between the measured and true star positions,leading to plethoric false matches and requiring complex and time-consuming verification for star identification.Low identification rate hinders the application of low-noise and cost-effective rolling shutter image sensors.In this work,we first study a rolling shutter distortion model of angular distances between stars,and then propose a novel three-stage star identification algorithm to identify distorted star images captured by the rolling shutter star sensor.The first stage uses a modified grid algorithm with adaptive error tolerance and an expanded pattern database to efficiently eliminate spurious matches.The second stage performs angular velocity estimation based on Hough transform to verify the matches that follow the same distortion pattern.The third stage applies a rolling shutter error correction method for further verification.Both the simulation and night sky image test demonstrate the effectiveness and efficiency of our algorithm under high dynamic conditions.The accuracy of angular velocity estimation method by Hough transform is evaluated and the root mean square error is below 0.5(°)/s.Our algorithm achieves a 95.7% identification rate at an angular velocity of 10(°)/s,which is much higher than traditional algorithms.
文摘In passive radars, coherent integration is an essential method to achieve processing gain for target detection. The cross ambiguity function(CAF) and the method based on matched filtering are the most common approaches. The method based on matched filtering is an approximation to CAF and the procedure is:(1) divide the signal into snapshots;(2) perform matched filtering on each snapshot;(3) perform fast Fourier transform(FFT) across the snapshots. The matched filtering method is computationally affordable and can offer savings of an order of 1000 times in execution speed over that of CAF. However, matched filtering suffers from severe energy loss for high speed targets. In this paper we concentrate mainly on the matched filtering method and we use keystone transform to rectify range migration. Several factors affecting the performance of coherent integration are discussed based on the matched filtering method and keystone transform. Modified methods are introduced to improve the performance by analyzing the impacts of mismatching, precision of the keystone transform, and discretization. The modified discrete chirp Fourier transform(MDCFT) is adopted to rectify the Doppler expansion in a multi-target scenario. A novel velocity estimation method is proposed, and an extended processing scheme presented. Simulations show that the proposed algorithms improve the performance of matched filtering for high speed targets.
基金the program of National Natural Science Foundation of China(Grant Nos:41674034,41974032,11903040)Chinese Academy of Sciences(CAS)programs of“The Frontier Science Research Project”(Grant No:QYZDB-SSW-DQC028)K.C.Wong Education Foundation.Rui Tu is also supported by the“High Level Talents”of CAS(Grant No:Y923YC1701).
文摘The BeiDou Navigation Satellite System(BDS)provides global Positioning,Velocity,And Timing(PVT)services that are widely used in various areas.The BDS satellites frequently need the orbit maneuvers due to various perturbations to keep satellites in their designed positions.During these maneuvers,PVT services may be abnormal if the data from a maneuvering satellite is used.In this paper we developed an approach to recover the abnormal PVT services.By using BDS observations from multiple tracking stations,the orbital errors of a maneuvering satellite can be in real time obtained and corrected,thereby avoiding any influence on the performance of PVT services.The tests show that the average precision of position,velocity and timing services are improved by 0.8 m,0.1 mm/s and 0.16 ns,respectively,using the developed orbital maneuver recovery approach.In addition,the approach can also be used for the orbital maneuver detection and monitoring.
文摘Preliminary results of the wind velocity estimation using the Maximum Entropy Method (MEM) to MU radar observation data sets are presented. The comparison of the results from the periodogram method and the MEM shows that the MEM estimation is reliable, and has higher accuracy, resolution and detectability than the estimation from periodogram method. The high accuracy power spectrum obtained by the MEM is very useful to studying the atmospheric turbulence structure. However. the MEM needs the longer computing time for obtaining the high accuracy spectrum. Particularly, the estimation of MEM will bring serious devia- tion at lower signal-to-noise ratio.
基金This work was supported in part by the National Science Foundation of China under Grant nos. 61005077, 51105365 and 61273347, in part by Research Fund for the Doctoral Programme of Higher Education of China under Grant no. 20124307110002, and in part by the Foundation for the Author of Excellent Doctoral Dissertation of HunanProvince under Grant no. YB2011B0001. The authors would like to thank Daibing Zhang for his sincere guidance and constructive comments. The corresponding author (Tianjiang hu) would like to thank Dr. Xue-feng Yuan of University of Manchester, UK for the collaboration during Dr. Hu's academic visit from February 2013 to August 2013 in Manchester Institute of Biotechnology.
文摘Feedback flow information is of significance to enable underwater locomotion controllers with higher adaptability and efficiency within varying environments. Inspired from fish sensing their external flow via near-body pressure, a computational scheme is proposed and developed in this paper. In conjunction with the scheme, Computational Fluid Dynamics (CFD) is employed to study the bio-inspired fish swimming hydrodynamics. The spatial distribution and temporal variation of the near-body pressure of fish are studied over the whole computational domain. Furthermore, a filtering algorithm is designed and implemented to fuse near-body pressure of one or multiple points for the estimation on the external flow. The simulation results demonstrate that the proposed computational scheme and its corresponding algorithm are both effective to predict the inlet flow velocity by using near-body pressure at distributed spatial points.
基金supports from the National Natural Science Foundation of China (No.41204086)the Excellent Ph D Thesis Scholarship from China University of Pertroleum (Huadong)
文摘Multiscale strategies are very important in the successful application of waveform-based velocity inversion. The strategy that sequentially preceeds from long to short scale of velocity model, has been well developed in full waveform inversion (FWI) to solve the local mininum problem. In contrast, it's not well understood in the image-domain waveform tomography (IWT), which back-projects incoherent waveform components of the common image gather into velocity updates. IWT is less prone to local minimum problem but tends to build long-scale model with low resolution. In order to build both long- and short-scale model by IWT, we discuss several multiscale strategies restricted in the image domain. The strategies include model reparameterization, objective function switching and gradient rescaling. Numerical tests on Marmsousi model and real data demonstrate that our proposed multiscale IWT is effective in buidling velocity model with wide wavenumber spectrum.
基金This work was supported by the National Natural Science Foundation of China under Grant Nos. 61532002, 61672237, 61672077 and 61672149, the Natural Science Foundation of USA under Grant Nos. IIS-1715985, IIS-0949467, IIS-1047715, and IIS-1049448, and the National High Technology Research and Development 863 Program of China under Grant No. 2015AA016404.
文摘Hybrid approaches such as combining video data with pure physics-based simulation have been popular in the recent decade for computer graphics. The key motivation is to clearly retain salient advantages from both data-driven method and model-centric numerical simulation, while overcoming certain difficulties of both. The Eulerian method, which has been widely employed in flow simulation, stores variables such as velocity and density on regular Cartesian grids, thereby it could be associated with (volumetric) video data on the same domain. This paper proposes a novel method for flow simulation, which is tightly coupling video-based reconstruction with physically-based simulation and making use of meaningful physical attributes during re-simulation. First, we reconstruct the density field from a single-view video. Second, we estimate the velocity field using the reconstructed density field as prior. In the iterative process, the pressure projection can be treated as a physical constraint and the results of each step are corrected by obtained velocity field in the Eulerian framework. Third, we use the reconstructed density field and velocity field to guide the Eulerian simulation with anticipated new results. Through the guidance of video data, we can produce new flows that closely match with the real scene exhibited in data acquisition. Moreover, in the multigrid Eulerian simulation, we can generate new visual effects which cannot be created from raw video acquisition, with a goal of easily producing many more visually interesting results and respecting true physical attributes at the same time. We demonstrate salient advantages of our hybrid method with a variety of animation examples.
文摘Video-based vibration measurement is a cost-effective way for remote monitoring the health conditions of transportation and other civil structures, especially for situations where accessibility is restricted and does not allow installation of conventional monitoring devices. Besides, video-based system is global measurement. The technical basis of video-based remote vibration measurement system is digital image analysis. Comparison of the images allow the field of motion to be accurately delineated. Such information is important to understand the structure behaviors including the motion and strain distribution. This paper presents system and analyses to monitor the vibration velocity and displacement field. The performance is demonstrated on a testbed of model building. Three different methods (i.e., frame difference method, particle image velocimetry, and optical Flow Method) are utilized to analyze the image sequences to extract the feature of motion. The Performance is validated using accelerometer data. The results indicate that all three methods can estimate the velocity field of the model building, although the results can be affected by factors such as background noise and environmental interference. Optical flow method achieved the best performance among these three methods studied. With further refinement of system hardware and image processing software, it will be developed into a remote video based monitoring system for structural health monitoring of transportation infrastructure to assist the diagnoses of its health conditions.