期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Double perovskite anti-supported rare earth oxide catalyst CeO_(2)/La_(2)CoFeO_(6)for efficient ventilation air methane combustion 被引量:3
1
作者 Xiaojiao Gao Zehua Jin +5 位作者 Ruisheng Hu Jia'nan Hu Yaqin Bai Pan Wang Jie Zhang Chunxiao Zhao 《Journal of Rare Earths》 SCIE EI CAS CSCD 2021年第4期398-408,共11页
Ventilation air methane is one of available resources with a massive reserve.However,most of ventilation air methane is discharged into the air and pollutes the environment.Catalysts with high temperature resistance(&... Ventilation air methane is one of available resources with a massive reserve.However,most of ventilation air methane is discharged into the air and pollutes the environment.Catalysts with high temperature resistance(>800℃)for ventilation air methane are very essential for utilization of the ventilation air methane.We mainly prepared catalysts CeO_(2)/La_(2)CoFeO_(6)and La_(2)CoFeO_(6)/CeO_(2)and comparative samples CeO_(2)and La_(2)CoFeO_(6)by the simple sol-gel method and calcined them under 9000C,and tested the catalytic performance of ventilation air methane combustion under the condition of 5 vol%H_(2)O.The experimental results show that the light-off temperature(T_(1O))and complete combustion temperature(T_(90))of the ventilation air methane combustion reaction of CeO_(2)/La_(2)CoFeO_(6)catalyst are 417.4 and 587.7℃,respectively.T_(1O)and Tgo of La_(2)CoFeO_(6)/CeO_(2)only reach 425.5 and 615.8℃.The T_(10)and T_(9O)of CeO_(2)/La_(2)CoFeO_(6)are 417.4 and 587.7℃,which are lower than those of La_(2)CoFeO_(6)[T_(10)=452.4℃and T_(90)=673.0℃)and La_(2)CoFeO_(6)/CeO_(2)(T_(10)=425.5℃and T_(90)=615.8℃).Therefore,the catalytic performance of the anti-supported rare earth oxide catalyst CeO_(2)/La_(2)CoFeO_(6)is better than that of La_(2)CoFeO_(6)and supported catalyst La_(2)CoFeO_(6)/CeO_(2). 展开更多
关键词 Rrare earth Double perovskite oxide Anti-supported catalyst ventilation air methane Catalytic combustion
原文传递
Facile Synthesis of Mesoporous Co3O4 Nanoflowers for Catalytic Combustion of Ventilation Air Methane 被引量:1
2
作者 LIU Shankui LIU Pengcheng +2 位作者 NIU Ruyue WANG Shuang LI Jinping 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2017年第6期965-970,共6页
Flower-like Co3O4 hierarchical microspheres composed of self-assembled porous nanoplates were pre- pared by employing Pluronic F127 block-copolymer as template. The samples were characterized by powder X-ray diffract... Flower-like Co3O4 hierarchical microspheres composed of self-assembled porous nanoplates were pre- pared by employing Pluronic F127 block-copolymer as template. The samples were characterized by powder X-ray diffraction(PXRD), scanning/transmission electron microscopy(SEM/TEM), and nitrogen adsorption-desorption at 77 K. The results show that the catalytic activity of Co3O4 nanoflowers for the combustion of ventilation air methane is higher than that of commercial Co3O4. The superior catalytic performance of this material can be related to its dominantly exposed {112} crystal planes and higher content of surface Co3+. 展开更多
关键词 CO3O4 Nanoflower Catalytic combustion ventilation air methane
原文传递
LaMnO_(3)(La_(0.8)Sr_(0.2)MnO_(3))Perovskites for Lean Methane Combustion:Effect of Synthesis Method
3
作者 Natalia Miniajluk Janusz Trawczynski +1 位作者 Miroslaw Zawadzki Wlodzimierz Tylus 《Advances in Materials Physics and Chemistry》 2018年第4期193-215,共23页
The effect of the preparation method on the properties of LaMnO3 and La0.8Sr0.2MnO3 perovskite was studied. Materials were prepared by four methods: sol-gel, chemical combustion, solvothermal and spray pyrolysis and c... The effect of the preparation method on the properties of LaMnO3 and La0.8Sr0.2MnO3 perovskite was studied. Materials were prepared by four methods: sol-gel, chemical combustion, solvothermal and spray pyrolysis and characterized. The effect of the synthesis method on the texture, acid-base character of the surface, reducibility with hydrogen, oxygen desorption, surface composition and catalytic activity for combustion of lean methane was studied. It was found that synthesis method affects physicochemical properties of obtained materials-solvothermally produced materials exhibit well-developed surface area, presence of reactive oxygen species on surface and high catalytic activity for CH4 combustion. Generally, LaMnO3 and La0.8Sr0.2MnO3 perovskites show catalytic activity for lean CH4 combustion comparable or higher than the activity of 0.5 wt.% Pt/Al2O3 but lower than 1 wt.% Pd/Al2O3. 展开更多
关键词 PEROVSKITE Different Synthesis Method Lean methane Combustion Combustion Rate ventilation air methane
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部