In underground constructions, a good ventilation design not only delivers fresh air to establish good working environment, but also provides a scientific and reliable basis to prevent disasters. In emergency cases, un...In underground constructions, a good ventilation design not only delivers fresh air to establish good working environment, but also provides a scientific and reliable basis to prevent disasters. In emergency cases, unexpected closure of the main airways may occur, providing the workers with alternative airways is substantial. This is important not only to sustain personnel lives, but also to prevent the mine ventilation system from damage. In this research, alternate solutions were introduced in case of failure in the underground construction to keep a pre-assigned fixed quantity in a working place for mine ventilation network. Eight different collapse scenarios were proposed to study their effect on the air quantity distribution among the branches in the ventilation circuit. From these scenarios, it is found that providing a sufficient air quantity in the working places could be achieved through modification of the network topology and adjusting the values of the regulators pressure. It is also indicated that the distance between the collapse and working places has a great effect on the amount of air delivered to it. A reduction in the power consumption could be done by re-arrange the installed regulators and decreasing the number of nodes and branches inside the network. A relationship representing the effect of changing the network topology on the total network power consumption was deduced through regression analysis. It is found that the total network power is quadratic dependent on the number of regulators and number of branches while it is directly dependent on the regulator power.展开更多
文摘In underground constructions, a good ventilation design not only delivers fresh air to establish good working environment, but also provides a scientific and reliable basis to prevent disasters. In emergency cases, unexpected closure of the main airways may occur, providing the workers with alternative airways is substantial. This is important not only to sustain personnel lives, but also to prevent the mine ventilation system from damage. In this research, alternate solutions were introduced in case of failure in the underground construction to keep a pre-assigned fixed quantity in a working place for mine ventilation network. Eight different collapse scenarios were proposed to study their effect on the air quantity distribution among the branches in the ventilation circuit. From these scenarios, it is found that providing a sufficient air quantity in the working places could be achieved through modification of the network topology and adjusting the values of the regulators pressure. It is also indicated that the distance between the collapse and working places has a great effect on the amount of air delivered to it. A reduction in the power consumption could be done by re-arrange the installed regulators and decreasing the number of nodes and branches inside the network. A relationship representing the effect of changing the network topology on the total network power consumption was deduced through regression analysis. It is found that the total network power is quadratic dependent on the number of regulators and number of branches while it is directly dependent on the regulator power.