In traditional digital twin communication system testing,we can apply test cases as completely as possible in order to ensure the correctness of the system implementation,and even then,there is no guarantee that the d...In traditional digital twin communication system testing,we can apply test cases as completely as possible in order to ensure the correctness of the system implementation,and even then,there is no guarantee that the digital twin communication system implementation is completely correct.Formal verification is currently recognized as a method to ensure the correctness of software system for communication in digital twins because it uses rigorous mathematical methods to verify the correctness of systems for communication in digital twins and can effectively help system designers determine whether the system is designed and implemented correctly.In this paper,we use the interactive theorem proving tool Isabelle/HOL to construct the formal model of the X86 architecture,and to model the related assembly instructions.The verification result shows that the system states obtained after the operations of relevant assembly instructions is consistent with the expected states,indicating that the system meets the design expectations.展开更多
The consensus of the automotive industry and traffic management authorities is that autonomous vehicles must follow the same traffic laws as human drivers.Using formal or digital methods,natural language traffic rules...The consensus of the automotive industry and traffic management authorities is that autonomous vehicles must follow the same traffic laws as human drivers.Using formal or digital methods,natural language traffic rules can be translated into machine language and used by autonomous vehicles.In this paper,a translation flow is designed.Beyond the translation,a deeper examination is required,because the semantics of natural languages are rich and complex,and frequently contain hidden assumptions.The issue of how to ensure that digital rules are accurate and consistent with the original intent of the traffic rules they represent is both significant and unresolved.In response,we propose a method of formal verification that combines equivalence verification with model checking.Reasonable and reassuring digital traffic rules can be obtained by utilizing the proposed traffic rule digitization flow and verification method.In addition,we offer a number of simulation applications that employ digital traffic rules to assess vehicle violations.The experimental findings indicate that our digital rules utilizing metric temporal logic(MTL)can be easily incorporated into simulation platforms and autonomous driving systems(ADS).展开更多
With the promotion of digital currency,how to effectively solve the authenticity,privacy and usability of digital currency issuance has been a key problem.Redactable signature scheme(RSS)can provide the verification o...With the promotion of digital currency,how to effectively solve the authenticity,privacy and usability of digital currency issuance has been a key problem.Redactable signature scheme(RSS)can provide the verification of the integrity and source of the generated sub-documents and solve the privacy problem in digital currency by removing blocks from the signed documents.Unfortunately,it has not realized the consolidation of signed documents,which can not solve the problem of merging two digital currencies.Now,we introduce the concept of weight based on the threshold secret sharing scheme(TSSS)and present a redactable signature scheme with merge algorithm(RSS-MA)using the quasi-commutative accumulator.Our scheme can reduce the communication overhead by utilizing the merge algorithm when transmitting multiple digital currency signatures.Furthermore,this can effectively hide the scale of users’private monetary assets and the number of transactions between users.While meeting the three properties of digital currency issuance,in order to ensure the availability of digital currency after redacting,editors shall not remove the relevant identification information block form digital currency.Finally,our security proof and the analysis of efficiency show that RSS-MA greatly improves the communication and computation efficiency when transmitting multiple signatures.展开更多
As the complexity of autonomous vehicles(AVs)continues to increase and artificial intelligence algorithms are becoming increasingly ubiquitous,a novel safety concern known as the safety of the intended functionality(S...As the complexity of autonomous vehicles(AVs)continues to increase and artificial intelligence algorithms are becoming increasingly ubiquitous,a novel safety concern known as the safety of the intended functionality(SOTIF)has emerged,presenting significant challenges to the widespread deployment of AVs.SOTIF focuses on issues arising from the functional insufficiencies of the AVs’intended functionality or its implementation,apart from conventional safety considerations.From the systems engineering standpoint,this study offers a comprehensive exploration of the SOTIF landscape by reviewing academic research,practical activities,challenges,and perspectives across the development,verification,validation,and operation phases.Academic research encompasses system-level SOTIF studies and algorithm-related SOTIF issues and solutions.Moreover,it encapsulates practical SOTIF activities undertaken by corporations,government entities,and academic institutions spanning international and Chinese contexts,focusing on the overarching methodologies and practices in different phases.Finally,the paper presents future challenges and outlook pertaining to the development,verification,validation,and operation phases,motivating stakeholders to address the remaining obstacles and challenges.展开更多
Layered rock mass is a type of engineering rock mass with sound mechanical anisotropy,which is generally unfavorable to the stability of underground works.To investigate the strength anisotropy of layered rock,the Moh...Layered rock mass is a type of engineering rock mass with sound mechanical anisotropy,which is generally unfavorable to the stability of underground works.To investigate the strength anisotropy of layered rock,the Mohr-Coulomb and Hoek-Brown criteria are introduced to establish the two transverse isotropic strength criteria based on Jaeger's single weak plane theory and maximum axial strain theory,and parameter determination methods.Furthermore,the sensitivity of strength parameters(K 1,K 2,and K 3)that are used to characterize the anisotropy strength of non-sliding failure involved in the strength criteria and confining pressure are investigated.The results demonstrate that strength parameters K 1 and K 2 affect the strength of layered rock samples at all bedding angles except for the bedding angle of 90°and the angle range that can cause the shear sliding failure along the bedding plane.The strength of samples at any bedding angle decreases with increasing K 1,whereas the opposite is for K 2.Except for bedding angles of 0°and 90°and the bedding angle range that can cause the shear sliding along the bedding plane,K 3 has an impact on the strength of rock samples with other bedding angles that the specimens'strength increases with increase of K 3.In addition,the strength of the rock sample increases as confining pressure rises.Furthermore,the uniaxial and triaxial tests of chlorite schist samples were carried out to verify and evaluate the strength criteria proposed in the paper.It shows that the predicted strength is in good agreement with the experimental results.To test the applicability of the strength criterion,the strength data of several types of rock in the literature are compared.Finally,a comparison is made between the fitting effects of the two strength criteria and other available criteria for layered rocks.展开更多
The stability control of fissured rock is difficult,especially under static and dynamic loads in deep coal mines.In this paper,the dynamic mechanical properties,strain rate evolution and energy dissipation of fissured...The stability control of fissured rock is difficult,especially under static and dynamic loads in deep coal mines.In this paper,the dynamic mechanical properties,strain rate evolution and energy dissipation of fissured and anchored rocks were respectively obtained by SHPB tests.It was found that bolt can provide supporting efficiency-improving effect for fissured rock against dynamic disturbance,and this effect increased quadratically with decrease in anchoring angles.Then,the energy dissipation mechanism of anchored rock was obtained by slipping model.Furthermore,bolt energy-absorbing mechanism by instantaneous tensile-shear deformation was expressed based on material mechanics,which was the larger the anchoring angle,the smaller the energy absorption,and the less the contribution to supporting efficiency improvement.On this basis,the functional relationship between energy dissipation of anchored rock and energy absorption of bolt was established.Taking the coal-gangue separation system of Longgu coal mine as an example,the optimal anchoring angle can be determined as 57.5°–67.5°.Field monitoring showed fissured rock with the optimal anchoring angle,can not only effectively control the deformation,but also fully exert the energy-absorbing and efficiency-improving effect of bolt itself.This study provides guidance to the stability control and supporting design for deep engineering under the same or similar conditions.展开更多
The maturity of 5G technology has enabled crowd-sensing services to collect multimedia data over wireless network,so it has promoted the applications of crowd-sensing services in different fields,but also brings more ...The maturity of 5G technology has enabled crowd-sensing services to collect multimedia data over wireless network,so it has promoted the applications of crowd-sensing services in different fields,but also brings more privacy security challenges,the most commom which is privacy leakage.As a privacy protection technology combining data integrity check and identity anonymity,ring signature is widely used in the field of privacy protection.However,introducing signature technology leads to additional signature verification overhead.In the scenario of crowd-sensing,the existing signature schemes have low efficiency in multi-signature verification.Therefore,it is necessary to design an efficient multi-signature verification scheme while ensuring security.In this paper,a batch-verifiable signature scheme is proposed based on the crowd-sensing background,which supports the sensing platform to verify the uploaded multiple signature data efficiently,so as to overcoming the defects of the traditional signature scheme in multi-signature verification.In our proposal,a method for linking homologous data was presented,which was valuable for incentive mechanism and data analysis.Simulation results showed that the proposed scheme has good performance in terms of security and efficiency in crowd-sensing applications with a large number of users and data.展开更多
In order to improve the overall resilience of the urban infrastructures, it is required to conduct blast resistant design for important building structures in the city. For complex terrain in the city, it is recommend...In order to improve the overall resilience of the urban infrastructures, it is required to conduct blast resistant design for important building structures in the city. For complex terrain in the city, it is recommended to determine the blast load on the structures via numerical simulation. Since the mesh size of the numerical model highly depends on the explosion scenario, there is no generally applicable approach for the mesh size selection. An efficient method to determine the mesh size of the numerical model of near-ground detonation based on explosion scenarios is proposed in this study. The effect of mesh size on the propagation of blast wave under different explosive weights was studied, and the correlations between the mesh size effect and the charge weight or the scaled distance was described. Based on the principle of the finite element method and Hopkinson-Cranz scaling law, a mesh size measurement unit related to the explosive weight was proposed as the criterion for determining the mesh size in the numerical simulation. Finally, the applicability of the method proposed in this paper was verified by comparing the results from numerical simulation and the explosion tests and was verified in AUTODYN.展开更多
Recent advancements in satellite technologies and the declining cost of access to space have led to the emergence of large satellite constellations in Low Earth Orbit(LEO).However,these constellations often rely on be...Recent advancements in satellite technologies and the declining cost of access to space have led to the emergence of large satellite constellations in Low Earth Orbit(LEO).However,these constellations often rely on bent-pipe architecture,resulting in high communication costs.Existing onboard inference architectures suffer from limitations in terms of low accuracy and inflexibility in the deployment and management of in-orbit applications.To address these challenges,we propose a cloud-native-based satellite design specifically tailored for Earth Observation tasks,enabling diverse computing paradigms.In this work,we present a case study of a satellite-ground collaborative inference system deployed in the Tiansuan constellation,demonstrating a remarkable 50%accuracy improvement and a substantial 90%data reduction.Our work sheds light on in-orbit energy,where in-orbit computing accounts for 17%of the total onboard energy consumption.Our approach represents a significant advancement of cloud-native satellite,aiming to enhance the accuracy of in-orbit computing while simultaneously reducing communication cost.展开更多
Blockchain can realize the reliable storage of a large amount of data that is chronologically related and verifiable within the system.This technology has been widely used and has developed rapidly in big data systems...Blockchain can realize the reliable storage of a large amount of data that is chronologically related and verifiable within the system.This technology has been widely used and has developed rapidly in big data systems across various fields.An increasing number of users are participating in application systems that use blockchain as their underlying architecture.As the number of transactions and the capital involved in blockchain grow,ensuring information security becomes imperative.Addressing the verification of transactional information security and privacy has emerged as a critical challenge.Blockchain-based verification methods can effectively eliminate the need for centralized third-party organizations.However,the efficiency of nodes in storing and verifying blockchain data faces unprecedented challenges.To address this issue,this paper introduces an efficient verification scheme for transaction security.Initially,it presents a node evaluation module to estimate the activity level of user nodes participating in transactions,accompanied by a probabilistic analysis for all transactions.Subsequently,this paper optimizes the conventional transaction organization form,introduces a heterogeneous Merkle tree storage structure,and designs algorithms for constructing these heterogeneous trees.Theoretical analyses and simulation experiments conclusively demonstrate the superior performance of this scheme.When verifying the same number of transactions,the heterogeneous Merkle tree transmits less data and is more efficient than traditional methods.The findings indicate that the heterogeneous Merkle tree structure is suitable for various blockchain applications,including the Internet of Things.This scheme can markedly enhance the efficiency of information verification and bolster the security of distributed systems.展开更多
In relatively coarse-resolution atmospheric models,cumulus parameterization helps account for the effect of subgridscale convection,which produces supplemental rainfall to the grid-scale precipitation and impacts the ...In relatively coarse-resolution atmospheric models,cumulus parameterization helps account for the effect of subgridscale convection,which produces supplemental rainfall to the grid-scale precipitation and impacts the diurnal cycle of precipitation.In this study,the diurnal cycle of precipitation was studied using the new simplified Arakawa-Schubert scheme in a global non-hydrostatic atmospheric model,i.e.,the Yin-Yang-grid Unified Model for the Atmosphere.Two new diagnostic closures and a convective trigger function were suggested to emphasize the job of the cloud work function corresponding to the free tropospheric large-scale forcing.Numerical results of the 0.25-degree model in 3-month batched real-case simulations revealed an improvement in the diurnal precipitation variation by using a revised trigger function with an enhanced dynamical constraint on the convective initiation and a suitable threshold of the trigger.By reducing the occurrence of convection during peak solar radiation hours,the revised scheme was shown to be effective in delaying the appearance of early-afternoon rainfall peaks over most land areas and accentuating the nocturnal peaks that were wrongly concealed by the more substantial afternoon peak.In addition,the revised scheme enhanced the simulation capability of the precipitation probability density function,such as increasing the extremely low-and high-intensity precipitation events and decreasing small and moderate rainfall events,which contributed to the reduction of precipitation bias over mid-latitude and tropical land areas.展开更多
Online Signature Verification (OSV), as a personal identification technology, is widely used in various industries.However, it faces challenges, such as incomplete feature extraction, low accuracy, and computational h...Online Signature Verification (OSV), as a personal identification technology, is widely used in various industries.However, it faces challenges, such as incomplete feature extraction, low accuracy, and computational heaviness. Toaddress these issues, we propose a novel approach for online signature verification, using a one-dimensionalGhost-ACmix Residual Network (1D-ACGRNet), which is a Ghost-ACmix Residual Network that combines convolutionwith a self-attention mechanism and performs improvement by using Ghost method. The Ghost-ACmix Residualstructure is introduced to leverage both self-attention and convolution mechanisms for capturing global featureinformation and extracting local information, effectively complementing whole and local signature features andmitigating the problem of insufficient feature extraction. Then, the Ghost-based Convolution and Self-Attention(ACG) block is proposed to simplify the common parts between convolution and self-attention using the Ghostmodule and employ feature transformation to obtain intermediate features, thus reducing computational costs.Additionally, feature selection is performed using the random forestmethod, and the data is dimensionally reducedusing Principal Component Analysis (PCA). Finally, tests are implemented on the MCYT-100 datasets and theSVC-2004 Task2 datasets, and the equal error rates (EERs) for small-sample training using five genuine andforged signatures are 3.07% and 4.17%, respectively. The EERs for training with ten genuine and forged signaturesare 0.91% and 2.12% on the respective datasets. The experimental results illustrate that the proposed approacheffectively enhances the accuracy of online signature verification.展开更多
INTRODUCTION Types of paper Submission Checklist BEFORE YOU BEGIN Ethics in publishing Ethics Consent Publication Consent Studies in humans and animals Declaration of interest Submission declaration and verification.
This study used the China Meteorological Administration(CMA)three-source fusion gridded precipitation analysis data as a reference to evaluate the precipitation forecast performance of the European Centre for Medium-R...This study used the China Meteorological Administration(CMA)three-source fusion gridded precipitation analysis data as a reference to evaluate the precipitation forecast performance of the European Centre for Medium-Range Weather Forecasts(ECMWF)model for China from 2017 to 2022.The main conclusions are as follows.The precipitation forecast capability of the ECMWF model for China has gradually improved from 2017 to 2022.Various scores such as bias,equitable threat score(ETS),and Fractions Skill Score(FSS)showed improvements for different categories of precipitation.The bias of light rain forecasts overall adjusted towards smaller values,and the increase in forecast scores was greater in the warm season than in the cold season.The ETS for torrential rain more intense categories significantly increased,although there were large fluctuations in bias across different months.The model exhibited higher precipitation bias in most areas of North China,indicating overprediction,while it showed lower bias in South China,indicating underprediction.The ETSs indicate that the model performed better in forecasting precipitation in the northeastern part of China without the influence of climatic background conditions.Comparison of the differences between the first period and the second period of the forecast shows that the precipitation amplitude in the ECMWF forecast shifted from slight underestimation to overestimation compared to that of CMPAS05,reducing the likelihood of missing extreme precipitation events.The improvement in ETS is mainly due to the reduction in bias and false alarm rates and,more importantly,an increase in the hit rate.From 2017 to 2022,the area coverage error of model precipitation forecast relative to observations showed a decreasing trend at different scales,while the FSS showed an increasing trend,with the highest FSS observed in 2021.The ETS followed a parabolic trend with increasing neighborhood radius,with the better ETS neighborhood radius generally being larger for moderate rain and heavy rain compared with light rain and torrential rain events.展开更多
This review updates the present status of the field of molecular markers and marker-assisted selection(MAS),using the example of drought tolerance in barley.The accuracy of selected quantitative trait loci(QTLs),candi...This review updates the present status of the field of molecular markers and marker-assisted selection(MAS),using the example of drought tolerance in barley.The accuracy of selected quantitative trait loci(QTLs),candidate genes and suggested markers was assessed in the barley genome cv.Morex.Six common strategies are described for molecular marker development,candidate gene identification and verification,and their possible applications in MAS to improve the grain yield and yield components in barley under drought stress.These strategies are based on the following five principles:(1)Molecular markers are designated as genomic‘tags’,and their‘prediction’is strongly dependent on their distance from a candidate gene on genetic or physical maps;(2)plants react differently under favourable and stressful conditions or depending on their stage of development;(3)each candidate gene must be verified by confirming its expression in the relevant conditions,e.g.,drought;(4)the molecular marker identified must be validated for MAS for tolerance to drought stress and improved grain yield;and(5)the small number of molecular markers realized for MAS in breeding,from among the many studies targeting candidate genes,can be explained by the complex nature of drought stress,and multiple stress-responsive genes in each barley genotype that are expressed differentially depending on many other factors.展开更多
Background:The purpose of the study was to investigate the active ingredients and potential biochemical mechanisms of Juanbi capsule in knee osteoarthritis based on network pharmacology,molecular docking and animal ex...Background:The purpose of the study was to investigate the active ingredients and potential biochemical mechanisms of Juanbi capsule in knee osteoarthritis based on network pharmacology,molecular docking and animal experiments.Methods:Chemical components for each drug in the Juanbi capsule were obtained from Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform,while the target proteins for knee osteoarthritis were retrieved from the Drugbank,GeneCards,and OMIM databases.The study compared information on knee osteoarthritis and the targets of drugs to identify common elements.The data was imported into the STRING platform to generate a protein-protein interaction network diagram.Subsequently,a“component-target”network diagram was created using the screened drug components and target information with Cytoscape software.Common targets were imported into Metascape for GO function and KEGG pathway enrichment analysis.AutoDockTools was utilized to predict the molecular docking of the primary chemical components and core targets.Ultimately,the key targets were validated through animal experiments.Results:Juanbi capsule ameliorated Knee osteoarthritis mainly by affecting tumor necrosis factor,interleukin1β,MMP9,PTGS2,VEGFA,TP53,and other cytokines through quercetin,kaempferol,andβ-sitosterol.The drug also influenced the AGE-RAGE,interleukin-17,tumor necrosis factor,Relaxin,and NF-κB signaling pathways.The network pharmacology analysis results were further validated in animal experiments.The results indicated that Juanbi capsule could decrease the levels of tumor necrosis factor-αand interleukin-1βin the serum and synovial fluid of knee osteoarthritis rats and also down-regulate the expression levels of MMP9 and PTGS2 proteins in the articular cartilage.Conclusion:Juanbi capsule may improve the knee bone microstructure and reduce the expression of inflammatory factors of knee osteoarthritis via multiple targets and multiple signaling pathways.展开更多
In conjunction with the working characteristics of the high-clearance wheeled sprayer and the benefits of the closed hydraulic system,a series of reasonable working parameters should be established,and a hydraulic sys...In conjunction with the working characteristics of the high-clearance wheeled sprayer and the benefits of the closed hydraulic system,a series of reasonable working parameters should be established,and a hydraulic system that fulfills the requisite specifications should be designed.The AMESim software model is employed to construct a closed hydraulic transmission system,and the simulation analysis is then performed according to the data of hydraulic components.According to analysis results,the prototype can be optimized and upgraded,and a verification test is further carried out.The test results demonstrate that the designed closed hydraulic transmission system meets the actual working requirements of the high-clearance wheeled sprayer and provides a stable experimental platform for intelligent control of agricultural machinery.展开更多
In view of the composition analysis and identification of ancient glass products, L1 regularization, K-Means cluster analysis, elbow rule and other methods were comprehensively used to build logical regression, cluste...In view of the composition analysis and identification of ancient glass products, L1 regularization, K-Means cluster analysis, elbow rule and other methods were comprehensively used to build logical regression, cluster analysis, hyper-parameter test and other models, and SPSS, Python and other tools were used to obtain the classification rules of glass products under different fluxes, sub classification under different chemical compositions, hyper-parameter K value test and rationality analysis. Research can provide theoretical support for the protection and restoration of ancient glass relics.展开更多
The Balise Transmission Module(BTM)unit of the on-board train control system is a crucial component.Due to its unique installation position and complex environment,this unit has a higher fault rate within the on-board...The Balise Transmission Module(BTM)unit of the on-board train control system is a crucial component.Due to its unique installation position and complex environment,this unit has a higher fault rate within the on-board train control system.To conduct fault prediction for the BTM unit based on actual fault data,this study proposes a prediction method combining reliability statistics and machine learning,and achieves the fusion of prediction results from different dimensions through multi-method interactive validation.Firstly,a method for predicting equipment fault time targeting batch equipment is introduced.This method utilizes reliability statistics to construct a model of the remaining faultless operating time distribution considering uncertainty,thereby predicting the remaining faultless operating probability of the BTM unit.Secondly,considering the complexity of the BTM unit’s fault mechanism,the small sample size of fault cases,and the potential presence of multiple fault features in fault text records,an individual-oriented fault prediction method based on Bayesian-optimized Gradient Boosting Regression Tree(Bayes-GBRT)is proposed.This method achieves better prediction results compared to linear regression algorithms and random forest regression algorithms,with an average absolute error of only 0.224 years for predicting the fault time of this type of equipment.Finally,a multi-method interactive validation approach is proposed,enabling the fusion and validation of multi-dimensional results.The results indicate that the predicted fault time and the actual fault time conform to a log-normal distribution,and the parameter estimation results are basically consistent,verifying the accuracy and effectiveness of the prediction results.The above research findings can provide technical support for the maintenance and modification of BTM units,effectively reducing maintenance costs and ensuring the safe operation of high-speed railway,thus having practical engineering value for preventive maintenance.展开更多
Dynamic signature is a biometric modality that recognizes an individual’s anatomic and behavioural characteristics when signing their name. The rampant case of signature falsification (Identity Theft) was the key mot...Dynamic signature is a biometric modality that recognizes an individual’s anatomic and behavioural characteristics when signing their name. The rampant case of signature falsification (Identity Theft) was the key motivating factor for embarking on this study. This study was necessitated by the damages and dangers posed by signature forgery coupled with the intractable nature of the problem. The aim and objectives of this study is to design a proactive and responsive system that could compare two signature samples and detect the correct signature against the forged one. Dynamic Signature verification is an important biometric technique that aims to detect whether a given signature is genuine or forged. In this research work, Convolutional Neural Networks (CNNsor ConvNet) which is a class of deep, feed forward artificial neural networks that has successfully been applied to analysing visual imagery was used to train the model. The signature images are stored in a file directory structure which the Keras Python library can work with. Then the CNN was implemented in python using the Keras with the TensorFlow backend to learn the patterns associated with the signature. The result showed that for the same CNNs-based network experimental result of average accuracy, the larger the training dataset, the higher the test accuracy. However, when the training dataset are insufficient, better results can be obtained. The paper concluded that by training datasets using CNNs network, 98% accuracy in the result was recorded, in the experimental part, the model achieved a high degree of accuracy in the classification of the biometric parameters used.展开更多
基金supported in part by the Natural Science Foundation of Jiangsu Province in China under grant No.BK20191475the fifth phase of“333 Project”scientific research funding project of Jiangsu Province in China under grant No.BRA2020306the Qing Lan Project of Jiangsu Province in China under grant No.2019.
文摘In traditional digital twin communication system testing,we can apply test cases as completely as possible in order to ensure the correctness of the system implementation,and even then,there is no guarantee that the digital twin communication system implementation is completely correct.Formal verification is currently recognized as a method to ensure the correctness of software system for communication in digital twins because it uses rigorous mathematical methods to verify the correctness of systems for communication in digital twins and can effectively help system designers determine whether the system is designed and implemented correctly.In this paper,we use the interactive theorem proving tool Isabelle/HOL to construct the formal model of the X86 architecture,and to model the related assembly instructions.The verification result shows that the system states obtained after the operations of relevant assembly instructions is consistent with the expected states,indicating that the system meets the design expectations.
文摘The consensus of the automotive industry and traffic management authorities is that autonomous vehicles must follow the same traffic laws as human drivers.Using formal or digital methods,natural language traffic rules can be translated into machine language and used by autonomous vehicles.In this paper,a translation flow is designed.Beyond the translation,a deeper examination is required,because the semantics of natural languages are rich and complex,and frequently contain hidden assumptions.The issue of how to ensure that digital rules are accurate and consistent with the original intent of the traffic rules they represent is both significant and unresolved.In response,we propose a method of formal verification that combines equivalence verification with model checking.Reasonable and reassuring digital traffic rules can be obtained by utilizing the proposed traffic rule digitization flow and verification method.In addition,we offer a number of simulation applications that employ digital traffic rules to assess vehicle violations.The experimental findings indicate that our digital rules utilizing metric temporal logic(MTL)can be easily incorporated into simulation platforms and autonomous driving systems(ADS).
基金supported by Support Plan of Scientific and Technological Innovation Team in Universities of Henan Province(20IRTSTHN013)Shaanxi Key Laboratory of Information Communication Network and Security,Xi’an University of Posts&Telecommunications,Xi’an,Shaanxi 710121,China(ICNS202006)The National Natural Science Fund(No.61802117).
文摘With the promotion of digital currency,how to effectively solve the authenticity,privacy and usability of digital currency issuance has been a key problem.Redactable signature scheme(RSS)can provide the verification of the integrity and source of the generated sub-documents and solve the privacy problem in digital currency by removing blocks from the signed documents.Unfortunately,it has not realized the consolidation of signed documents,which can not solve the problem of merging two digital currencies.Now,we introduce the concept of weight based on the threshold secret sharing scheme(TSSS)and present a redactable signature scheme with merge algorithm(RSS-MA)using the quasi-commutative accumulator.Our scheme can reduce the communication overhead by utilizing the merge algorithm when transmitting multiple digital currency signatures.Furthermore,this can effectively hide the scale of users’private monetary assets and the number of transactions between users.While meeting the three properties of digital currency issuance,in order to ensure the availability of digital currency after redacting,editors shall not remove the relevant identification information block form digital currency.Finally,our security proof and the analysis of efficiency show that RSS-MA greatly improves the communication and computation efficiency when transmitting multiple signatures.
基金supported by the National Science Foundation of China Project(52072215,U1964203,52242213,and 52221005)National Key Research and Development(R&D)Program of China(2022YFB2503003)State Key Laboratory of Intelligent Green Vehicle and Mobility。
文摘As the complexity of autonomous vehicles(AVs)continues to increase and artificial intelligence algorithms are becoming increasingly ubiquitous,a novel safety concern known as the safety of the intended functionality(SOTIF)has emerged,presenting significant challenges to the widespread deployment of AVs.SOTIF focuses on issues arising from the functional insufficiencies of the AVs’intended functionality or its implementation,apart from conventional safety considerations.From the systems engineering standpoint,this study offers a comprehensive exploration of the SOTIF landscape by reviewing academic research,practical activities,challenges,and perspectives across the development,verification,validation,and operation phases.Academic research encompasses system-level SOTIF studies and algorithm-related SOTIF issues and solutions.Moreover,it encapsulates practical SOTIF activities undertaken by corporations,government entities,and academic institutions spanning international and Chinese contexts,focusing on the overarching methodologies and practices in different phases.Finally,the paper presents future challenges and outlook pertaining to the development,verification,validation,and operation phases,motivating stakeholders to address the remaining obstacles and challenges.
基金the financial support from the National Natural Science Foundation of China(Grant No.51979008)the National Natural Science Foundation of China(Grant No.51779018)the Innovation team of Changjiang River Scientific Research Institute(Grant No.CKSF2021715/YT).
文摘Layered rock mass is a type of engineering rock mass with sound mechanical anisotropy,which is generally unfavorable to the stability of underground works.To investigate the strength anisotropy of layered rock,the Mohr-Coulomb and Hoek-Brown criteria are introduced to establish the two transverse isotropic strength criteria based on Jaeger's single weak plane theory and maximum axial strain theory,and parameter determination methods.Furthermore,the sensitivity of strength parameters(K 1,K 2,and K 3)that are used to characterize the anisotropy strength of non-sliding failure involved in the strength criteria and confining pressure are investigated.The results demonstrate that strength parameters K 1 and K 2 affect the strength of layered rock samples at all bedding angles except for the bedding angle of 90°and the angle range that can cause the shear sliding failure along the bedding plane.The strength of samples at any bedding angle decreases with increasing K 1,whereas the opposite is for K 2.Except for bedding angles of 0°and 90°and the bedding angle range that can cause the shear sliding along the bedding plane,K 3 has an impact on the strength of rock samples with other bedding angles that the specimens'strength increases with increase of K 3.In addition,the strength of the rock sample increases as confining pressure rises.Furthermore,the uniaxial and triaxial tests of chlorite schist samples were carried out to verify and evaluate the strength criteria proposed in the paper.It shows that the predicted strength is in good agreement with the experimental results.To test the applicability of the strength criterion,the strength data of several types of rock in the literature are compared.Finally,a comparison is made between the fitting effects of the two strength criteria and other available criteria for layered rocks.
基金the financial support from the National Natural Science Foundation of China(Nos.52374094,52174122 and 52374218)Excellent Youth Fund of Shandong Natural Science Foundation(No.ZR2022YQ49)Taishan Scholar Project in Shandong Province(Nos.tspd20210313 and tsqn202211150)。
文摘The stability control of fissured rock is difficult,especially under static and dynamic loads in deep coal mines.In this paper,the dynamic mechanical properties,strain rate evolution and energy dissipation of fissured and anchored rocks were respectively obtained by SHPB tests.It was found that bolt can provide supporting efficiency-improving effect for fissured rock against dynamic disturbance,and this effect increased quadratically with decrease in anchoring angles.Then,the energy dissipation mechanism of anchored rock was obtained by slipping model.Furthermore,bolt energy-absorbing mechanism by instantaneous tensile-shear deformation was expressed based on material mechanics,which was the larger the anchoring angle,the smaller the energy absorption,and the less the contribution to supporting efficiency improvement.On this basis,the functional relationship between energy dissipation of anchored rock and energy absorption of bolt was established.Taking the coal-gangue separation system of Longgu coal mine as an example,the optimal anchoring angle can be determined as 57.5°–67.5°.Field monitoring showed fissured rock with the optimal anchoring angle,can not only effectively control the deformation,but also fully exert the energy-absorbing and efficiency-improving effect of bolt itself.This study provides guidance to the stability control and supporting design for deep engineering under the same or similar conditions.
基金supported by National Natural Science Foundation of China under Grant No.61972360Shandong Provincial Natural Science Foundation of China under Grant Nos.ZR2020MF148,ZR2020QF108.
文摘The maturity of 5G technology has enabled crowd-sensing services to collect multimedia data over wireless network,so it has promoted the applications of crowd-sensing services in different fields,but also brings more privacy security challenges,the most commom which is privacy leakage.As a privacy protection technology combining data integrity check and identity anonymity,ring signature is widely used in the field of privacy protection.However,introducing signature technology leads to additional signature verification overhead.In the scenario of crowd-sensing,the existing signature schemes have low efficiency in multi-signature verification.Therefore,it is necessary to design an efficient multi-signature verification scheme while ensuring security.In this paper,a batch-verifiable signature scheme is proposed based on the crowd-sensing background,which supports the sensing platform to verify the uploaded multiple signature data efficiently,so as to overcoming the defects of the traditional signature scheme in multi-signature verification.In our proposal,a method for linking homologous data was presented,which was valuable for incentive mechanism and data analysis.Simulation results showed that the proposed scheme has good performance in terms of security and efficiency in crowd-sensing applications with a large number of users and data.
基金the funding supports of the National Key Research and Development Plan,China(Grant No.2022YFC3801800)National Natural Science Foundation of China(Grant Nos.52038010 and 52078368)。
文摘In order to improve the overall resilience of the urban infrastructures, it is required to conduct blast resistant design for important building structures in the city. For complex terrain in the city, it is recommended to determine the blast load on the structures via numerical simulation. Since the mesh size of the numerical model highly depends on the explosion scenario, there is no generally applicable approach for the mesh size selection. An efficient method to determine the mesh size of the numerical model of near-ground detonation based on explosion scenarios is proposed in this study. The effect of mesh size on the propagation of blast wave under different explosive weights was studied, and the correlations between the mesh size effect and the charge weight or the scaled distance was described. Based on the principle of the finite element method and Hopkinson-Cranz scaling law, a mesh size measurement unit related to the explosive weight was proposed as the criterion for determining the mesh size in the numerical simulation. Finally, the applicability of the method proposed in this paper was verified by comparing the results from numerical simulation and the explosion tests and was verified in AUTODYN.
基金supported by National Natural Science Foundation of China(62032003).
文摘Recent advancements in satellite technologies and the declining cost of access to space have led to the emergence of large satellite constellations in Low Earth Orbit(LEO).However,these constellations often rely on bent-pipe architecture,resulting in high communication costs.Existing onboard inference architectures suffer from limitations in terms of low accuracy and inflexibility in the deployment and management of in-orbit applications.To address these challenges,we propose a cloud-native-based satellite design specifically tailored for Earth Observation tasks,enabling diverse computing paradigms.In this work,we present a case study of a satellite-ground collaborative inference system deployed in the Tiansuan constellation,demonstrating a remarkable 50%accuracy improvement and a substantial 90%data reduction.Our work sheds light on in-orbit energy,where in-orbit computing accounts for 17%of the total onboard energy consumption.Our approach represents a significant advancement of cloud-native satellite,aiming to enhance the accuracy of in-orbit computing while simultaneously reducing communication cost.
基金funded by the National Natural Science Foundation of China(62072056,62172058)the Researchers Supporting Project Number(RSP2023R102)King Saud University,Riyadh,Saudi Arabia+4 种基金funded by the Hunan Provincial Key Research and Development Program(2022SK2107,2022GK2019)the Natural Science Foundation of Hunan Province(2023JJ30054)the Foundation of State Key Laboratory of Public Big Data(PBD2021-15)the Young Doctor Innovation Program of Zhejiang Shuren University(2019QC30)Postgraduate Scientific Research Innovation Project of Hunan Province(CX20220940,CX20220941).
文摘Blockchain can realize the reliable storage of a large amount of data that is chronologically related and verifiable within the system.This technology has been widely used and has developed rapidly in big data systems across various fields.An increasing number of users are participating in application systems that use blockchain as their underlying architecture.As the number of transactions and the capital involved in blockchain grow,ensuring information security becomes imperative.Addressing the verification of transactional information security and privacy has emerged as a critical challenge.Blockchain-based verification methods can effectively eliminate the need for centralized third-party organizations.However,the efficiency of nodes in storing and verifying blockchain data faces unprecedented challenges.To address this issue,this paper introduces an efficient verification scheme for transaction security.Initially,it presents a node evaluation module to estimate the activity level of user nodes participating in transactions,accompanied by a probabilistic analysis for all transactions.Subsequently,this paper optimizes the conventional transaction organization form,introduces a heterogeneous Merkle tree storage structure,and designs algorithms for constructing these heterogeneous trees.Theoretical analyses and simulation experiments conclusively demonstrate the superior performance of this scheme.When verifying the same number of transactions,the heterogeneous Merkle tree transmits less data and is more efficient than traditional methods.The findings indicate that the heterogeneous Merkle tree structure is suitable for various blockchain applications,including the Internet of Things.This scheme can markedly enhance the efficiency of information verification and bolster the security of distributed systems.
基金supported by the National Natural Science Foundation of China(Grant Nos.42375153,42075151).
文摘In relatively coarse-resolution atmospheric models,cumulus parameterization helps account for the effect of subgridscale convection,which produces supplemental rainfall to the grid-scale precipitation and impacts the diurnal cycle of precipitation.In this study,the diurnal cycle of precipitation was studied using the new simplified Arakawa-Schubert scheme in a global non-hydrostatic atmospheric model,i.e.,the Yin-Yang-grid Unified Model for the Atmosphere.Two new diagnostic closures and a convective trigger function were suggested to emphasize the job of the cloud work function corresponding to the free tropospheric large-scale forcing.Numerical results of the 0.25-degree model in 3-month batched real-case simulations revealed an improvement in the diurnal precipitation variation by using a revised trigger function with an enhanced dynamical constraint on the convective initiation and a suitable threshold of the trigger.By reducing the occurrence of convection during peak solar radiation hours,the revised scheme was shown to be effective in delaying the appearance of early-afternoon rainfall peaks over most land areas and accentuating the nocturnal peaks that were wrongly concealed by the more substantial afternoon peak.In addition,the revised scheme enhanced the simulation capability of the precipitation probability density function,such as increasing the extremely low-and high-intensity precipitation events and decreasing small and moderate rainfall events,which contributed to the reduction of precipitation bias over mid-latitude and tropical land areas.
基金National Natural Science Foundation of China(Grant No.62073227)Liaoning Provincial Science and Technology Department Foundation(Grant No.2023JH2/101300212).
文摘Online Signature Verification (OSV), as a personal identification technology, is widely used in various industries.However, it faces challenges, such as incomplete feature extraction, low accuracy, and computational heaviness. Toaddress these issues, we propose a novel approach for online signature verification, using a one-dimensionalGhost-ACmix Residual Network (1D-ACGRNet), which is a Ghost-ACmix Residual Network that combines convolutionwith a self-attention mechanism and performs improvement by using Ghost method. The Ghost-ACmix Residualstructure is introduced to leverage both self-attention and convolution mechanisms for capturing global featureinformation and extracting local information, effectively complementing whole and local signature features andmitigating the problem of insufficient feature extraction. Then, the Ghost-based Convolution and Self-Attention(ACG) block is proposed to simplify the common parts between convolution and self-attention using the Ghostmodule and employ feature transformation to obtain intermediate features, thus reducing computational costs.Additionally, feature selection is performed using the random forestmethod, and the data is dimensionally reducedusing Principal Component Analysis (PCA). Finally, tests are implemented on the MCYT-100 datasets and theSVC-2004 Task2 datasets, and the equal error rates (EERs) for small-sample training using five genuine andforged signatures are 3.07% and 4.17%, respectively. The EERs for training with ten genuine and forged signaturesare 0.91% and 2.12% on the respective datasets. The experimental results illustrate that the proposed approacheffectively enhances the accuracy of online signature verification.
文摘INTRODUCTION Types of paper Submission Checklist BEFORE YOU BEGIN Ethics in publishing Ethics Consent Publication Consent Studies in humans and animals Declaration of interest Submission declaration and verification.
基金Special Innovation and Development Program of China Meteorological Administration(CXFZ2022J023)Projects in Key Areas of Social Development in Shaanxi Province(2024SF-YBXM-556)Shaanxi Province Basic Research Pro-gram of Natural Science(2023-JC-QN-0285)。
文摘This study used the China Meteorological Administration(CMA)three-source fusion gridded precipitation analysis data as a reference to evaluate the precipitation forecast performance of the European Centre for Medium-Range Weather Forecasts(ECMWF)model for China from 2017 to 2022.The main conclusions are as follows.The precipitation forecast capability of the ECMWF model for China has gradually improved from 2017 to 2022.Various scores such as bias,equitable threat score(ETS),and Fractions Skill Score(FSS)showed improvements for different categories of precipitation.The bias of light rain forecasts overall adjusted towards smaller values,and the increase in forecast scores was greater in the warm season than in the cold season.The ETS for torrential rain more intense categories significantly increased,although there were large fluctuations in bias across different months.The model exhibited higher precipitation bias in most areas of North China,indicating overprediction,while it showed lower bias in South China,indicating underprediction.The ETSs indicate that the model performed better in forecasting precipitation in the northeastern part of China without the influence of climatic background conditions.Comparison of the differences between the first period and the second period of the forecast shows that the precipitation amplitude in the ECMWF forecast shifted from slight underestimation to overestimation compared to that of CMPAS05,reducing the likelihood of missing extreme precipitation events.The improvement in ETS is mainly due to the reduction in bias and false alarm rates and,more importantly,an increase in the hit rate.From 2017 to 2022,the area coverage error of model precipitation forecast relative to observations showed a decreasing trend at different scales,while the FSS showed an increasing trend,with the highest FSS observed in 2021.The ETS followed a parabolic trend with increasing neighborhood radius,with the better ETS neighborhood radius generally being larger for moderate rain and heavy rain compared with light rain and torrential rain events.
基金supported by Bolashak International Fellowships,Center for International Programs,Ministry of Education and Science,KazakhstanAP14869777 supported by the Ministry of Education and Science,KazakhstanResearch Projects BR10764991 and BR10765000 supported by the Ministry of Agriculture,Kazakhstan。
文摘This review updates the present status of the field of molecular markers and marker-assisted selection(MAS),using the example of drought tolerance in barley.The accuracy of selected quantitative trait loci(QTLs),candidate genes and suggested markers was assessed in the barley genome cv.Morex.Six common strategies are described for molecular marker development,candidate gene identification and verification,and their possible applications in MAS to improve the grain yield and yield components in barley under drought stress.These strategies are based on the following five principles:(1)Molecular markers are designated as genomic‘tags’,and their‘prediction’is strongly dependent on their distance from a candidate gene on genetic or physical maps;(2)plants react differently under favourable and stressful conditions or depending on their stage of development;(3)each candidate gene must be verified by confirming its expression in the relevant conditions,e.g.,drought;(4)the molecular marker identified must be validated for MAS for tolerance to drought stress and improved grain yield;and(5)the small number of molecular markers realized for MAS in breeding,from among the many studies targeting candidate genes,can be explained by the complex nature of drought stress,and multiple stress-responsive genes in each barley genotype that are expressed differentially depending on many other factors.
基金funding from the Basic Research Project of the Education Department of Shaanxi Province(21JC010,21JP035)the Young and Middle-Aged Scientific Research and Innovation Team of the Shaanxi Provincial Administration of Traditional Chinese Medicine(2022SLRHLJ001)the 2023 Central Financial Transfer Payment Local Project“Innovation and Improvement of Five Types of Hospital Preparations,Such as Roumudan Granules”.
文摘Background:The purpose of the study was to investigate the active ingredients and potential biochemical mechanisms of Juanbi capsule in knee osteoarthritis based on network pharmacology,molecular docking and animal experiments.Methods:Chemical components for each drug in the Juanbi capsule were obtained from Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform,while the target proteins for knee osteoarthritis were retrieved from the Drugbank,GeneCards,and OMIM databases.The study compared information on knee osteoarthritis and the targets of drugs to identify common elements.The data was imported into the STRING platform to generate a protein-protein interaction network diagram.Subsequently,a“component-target”network diagram was created using the screened drug components and target information with Cytoscape software.Common targets were imported into Metascape for GO function and KEGG pathway enrichment analysis.AutoDockTools was utilized to predict the molecular docking of the primary chemical components and core targets.Ultimately,the key targets were validated through animal experiments.Results:Juanbi capsule ameliorated Knee osteoarthritis mainly by affecting tumor necrosis factor,interleukin1β,MMP9,PTGS2,VEGFA,TP53,and other cytokines through quercetin,kaempferol,andβ-sitosterol.The drug also influenced the AGE-RAGE,interleukin-17,tumor necrosis factor,Relaxin,and NF-κB signaling pathways.The network pharmacology analysis results were further validated in animal experiments.The results indicated that Juanbi capsule could decrease the levels of tumor necrosis factor-αand interleukin-1βin the serum and synovial fluid of knee osteoarthritis rats and also down-regulate the expression levels of MMP9 and PTGS2 proteins in the articular cartilage.Conclusion:Juanbi capsule may improve the knee bone microstructure and reduce the expression of inflammatory factors of knee osteoarthritis via multiple targets and multiple signaling pathways.
基金Supported by 2023 Xinjiang Uygur Autonomous Region R&D and Promotion and Application of Key Technologies of CNC Sprayer for Seed Corn(2023NC010).
文摘In conjunction with the working characteristics of the high-clearance wheeled sprayer and the benefits of the closed hydraulic system,a series of reasonable working parameters should be established,and a hydraulic system that fulfills the requisite specifications should be designed.The AMESim software model is employed to construct a closed hydraulic transmission system,and the simulation analysis is then performed according to the data of hydraulic components.According to analysis results,the prototype can be optimized and upgraded,and a verification test is further carried out.The test results demonstrate that the designed closed hydraulic transmission system meets the actual working requirements of the high-clearance wheeled sprayer and provides a stable experimental platform for intelligent control of agricultural machinery.
文摘In view of the composition analysis and identification of ancient glass products, L1 regularization, K-Means cluster analysis, elbow rule and other methods were comprehensively used to build logical regression, cluster analysis, hyper-parameter test and other models, and SPSS, Python and other tools were used to obtain the classification rules of glass products under different fluxes, sub classification under different chemical compositions, hyper-parameter K value test and rationality analysis. Research can provide theoretical support for the protection and restoration of ancient glass relics.
基金supported by the Integrated Rail Transit Dispatch Control and Intermodal Transport Service Technology Project(Grant No.2022YFB4300500).
文摘The Balise Transmission Module(BTM)unit of the on-board train control system is a crucial component.Due to its unique installation position and complex environment,this unit has a higher fault rate within the on-board train control system.To conduct fault prediction for the BTM unit based on actual fault data,this study proposes a prediction method combining reliability statistics and machine learning,and achieves the fusion of prediction results from different dimensions through multi-method interactive validation.Firstly,a method for predicting equipment fault time targeting batch equipment is introduced.This method utilizes reliability statistics to construct a model of the remaining faultless operating time distribution considering uncertainty,thereby predicting the remaining faultless operating probability of the BTM unit.Secondly,considering the complexity of the BTM unit’s fault mechanism,the small sample size of fault cases,and the potential presence of multiple fault features in fault text records,an individual-oriented fault prediction method based on Bayesian-optimized Gradient Boosting Regression Tree(Bayes-GBRT)is proposed.This method achieves better prediction results compared to linear regression algorithms and random forest regression algorithms,with an average absolute error of only 0.224 years for predicting the fault time of this type of equipment.Finally,a multi-method interactive validation approach is proposed,enabling the fusion and validation of multi-dimensional results.The results indicate that the predicted fault time and the actual fault time conform to a log-normal distribution,and the parameter estimation results are basically consistent,verifying the accuracy and effectiveness of the prediction results.The above research findings can provide technical support for the maintenance and modification of BTM units,effectively reducing maintenance costs and ensuring the safe operation of high-speed railway,thus having practical engineering value for preventive maintenance.
文摘Dynamic signature is a biometric modality that recognizes an individual’s anatomic and behavioural characteristics when signing their name. The rampant case of signature falsification (Identity Theft) was the key motivating factor for embarking on this study. This study was necessitated by the damages and dangers posed by signature forgery coupled with the intractable nature of the problem. The aim and objectives of this study is to design a proactive and responsive system that could compare two signature samples and detect the correct signature against the forged one. Dynamic Signature verification is an important biometric technique that aims to detect whether a given signature is genuine or forged. In this research work, Convolutional Neural Networks (CNNsor ConvNet) which is a class of deep, feed forward artificial neural networks that has successfully been applied to analysing visual imagery was used to train the model. The signature images are stored in a file directory structure which the Keras Python library can work with. Then the CNN was implemented in python using the Keras with the TensorFlow backend to learn the patterns associated with the signature. The result showed that for the same CNNs-based network experimental result of average accuracy, the larger the training dataset, the higher the test accuracy. However, when the training dataset are insufficient, better results can be obtained. The paper concluded that by training datasets using CNNs network, 98% accuracy in the result was recorded, in the experimental part, the model achieved a high degree of accuracy in the classification of the biometric parameters used.