期刊文献+
共找到14篇文章
< 1 >
每页显示 20 50 100
Transient analysis of diffusive chemical reactive species for couple stress fluid flow over vertical cylinder 被引量:2
1
作者 H.P.RANI G.J.REDDY C.N.KIM 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2013年第8期985-1000,共16页
The unsteady natural convective couple stress fluid flow over a semi-infinite vertical cylinder is analyzed for the homogeneous first-order chemical reaction effect. The couple stress fluid flow model introduces the l... The unsteady natural convective couple stress fluid flow over a semi-infinite vertical cylinder is analyzed for the homogeneous first-order chemical reaction effect. The couple stress fluid flow model introduces the length dependent effect based on the material constant and dynamic viscosity. Also, it introduces the biharmonic operator in the Navier-Stokes equations, which is absent in the case of Newtonian fluids. The solution to the time-dependent non-linear and coupled governing equations is carried out with an unconditionally stable Crank-Nicolson type of numerical schemes. Numerical results for the transient flow variables, the average wall shear stress, the Nusselt number, and the Sherwood number are shown graphically for both generative and destructive reactions. The time to reach the temporal maximum increases as the reaction constant K increases. The average values of the wall shear stress and the heat transfer rate decrease as K increases, while increase with the increase in the Sherwood number. 展开更多
关键词 couple stress fluid chemical reaction natural convection vertical cylinder finite difference method
下载PDF
The efect of the couple stress parameter and Prandtl number on the transient natural convection flow over a vertical cylinder
2
作者 H.P.Rani G.Janardhana Reddy Chang Nyung Kim 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2013年第5期649-656,共8页
An analysis is performed to study transient free convective boundary layer flow of a couple stress fluid over a vertical cylinder, in the absence of body couples. The solution of the time-dependent non-linear and coup... An analysis is performed to study transient free convective boundary layer flow of a couple stress fluid over a vertical cylinder, in the absence of body couples. The solution of the time-dependent non-linear and coupled governing equations is carried out with the aid of an unconditionally stable Crank-Nicolson type of numerical scheme. Numerical results for the steady-state velocity, temperature as well as the time histories of the skin-friction coefficient and Nus- selt number are presented graphically and discussed. It is seen that for all flow variables as the couple stress control parameter, Co, is amplified, the time required for reaching the temporal maximum increases but the steady-state decreases. 展开更多
关键词 Couple stress fluid Natural convection vertical cylinder Finite difference method
下载PDF
Numerical Study of the High-Frequency Wave Loads and Ringing Response of A Bottom-Hinged Vertical Cylinder in Focused Waves
3
作者 ZHANG Yi TENG Bin 《China Ocean Engineering》 SCIE EI CSCD 2020年第4期513-525,共13页
This paper presents a numerical study on the high-frequency wave loads and ringing response of offshore wind turbine foundations exposed to moderately steep transient water waves.Input wave groups are generated by the... This paper presents a numerical study on the high-frequency wave loads and ringing response of offshore wind turbine foundations exposed to moderately steep transient water waves.Input wave groups are generated by the technique of frequency-focusing,and the numerical simulation of focused waves is based on the NewWave model and a Fourier time-stepping procedure.The proposed model is validated by comparison with the published laboratory data.In respect of both the wave elevations and the underlying water particle kinematics,the numerical results are in excellent agreement with the experimental data.Furthermore,the local evolution of power spectra and the transfer of energy into higher frequencies can be clearly identified.Then the generalized FNV theory and Rainey’s model are applied respectively to calculate the nonlinear wave loads on a bottom-hinged vertical cylinder in focused waves.Resonant ringing response excited by the nonlinear high-frequency wave loads is found in the numerical simulation when frequency ratios(natural frequency of the structure to peak frequency of wave spectra)are equal to 3–5.Dynamic amplification factor of ringing response is also investigated for different dynamic properties(natural frequency and damping ratio)of the structure. 展开更多
关键词 high-frequency wave loads ringing response focused wave vertical cylinder
下载PDF
Experimental Study on 2-D Focusing Wave Run-up on A Vertical Cylinder 被引量:2
4
作者 柳淑学 孙一艳 +1 位作者 李金宣 臧军 《China Ocean Engineering》 SCIE EI 2010年第3期499-512,共14页
In this paper,the focused wave groups with different parameters and their actions on a vertical cylinder are experimentally studied. The harmonic wave characteristics of the focusing waves are analyzed by the addition... In this paper,the focused wave groups with different parameters and their actions on a vertical cylinder are experimentally studied. The harmonic wave characteristics of the focusing waves are analyzed by the addition and subtraction of the crest and trough focusing waves. The analyzed results show that higher order harmonics can be generated because of the interaction of component waves. Nonlinearity increases with the inputted wave amplitude and the frequency width increment. Further, the wave run-up around the vertical circular cylinder is experimentally studied. It increases with the wave steepness and the relative cylinder diameter increase. However, the variations of wave run-up around the circular cylinder are different. The researches provide a reference for further numerical studies. 展开更多
关键词 wave focusing NONLINEARITY vertical circular cylinder wave run-up
下载PDF
A numerical investigation of interactions between extreme waves and a vertical cylinder 被引量:1
5
作者 Qun-bin Chen Yu-xiang Ma +3 位作者 Guo-hai Dong Xiao-zhou Ma Bing Tai Xu-yang Niu 《Journal of Hydrodynamics》 SCIE EI CSCD 2020年第5期853-864,共12页
In this paper,the interactions between extreme waves and a vertical cylinder are investigated through a 3-D two-phase flow model.The numerical model is verified and validated by experimental data.Then,two factors are ... In this paper,the interactions between extreme waves and a vertical cylinder are investigated through a 3-D two-phase flow model.The numerical model is verified and validated by experimental data.Then,two factors are considered,the global wave steepness and the frequency bandwidth of the wave groups,in the studies of the in-line wave forces and the wave run-up around a cylinder.It is found that both the in-line wave forces and the wave run-up are remarkably increased with the increase of the global wave steepness,whereas the effect of the frequency bandwidth on the in-line wave forces is relatively weak in comparison with its effect on the wave run-up.The minimum and maximum wave run-ups are located in the directions of 22.5°and 180°with respect to the direction of the incident waves,respectively.Additionally,a new empirical formula is proposed for predicting the in-line wave forces by using only the free surface elevations around the cylinder.The results of the formula agree well with the simulation results. 展开更多
关键词 Extreme waves vertical cylinder in-line wave force wave run-up
原文传递
A 3-D numerical study of solitary wave interaction with vertical cylinders using a parallelised particle-in-cell solver 被引量:1
6
作者 Qiang Chen Jun Zang +1 位作者 David M.Kelly Aggelos S.Dimakopoulos 《Journal of Hydrodynamics》 SCIE EI CSCD 2017年第5期790-799,共10页
This paper aims to provide a better understanding of the interaction between solitary waves and vertical circular cylinders. This is achieved via process based numerical modelling using the parallel particle-in-cell b... This paper aims to provide a better understanding of the interaction between solitary waves and vertical circular cylinders. This is achieved via process based numerical modelling using the parallel particle-in-cell based incompressible flow solver PICIN. The numerical model solves the Navier-Stokes equations for free-surface flows and incorporates a Cartesian cut cell method for fluid-structure interaction. Solitary waves are generated using a piston-type wave paddle. The PICIN model is first validated using a test case that involves solitary wave scattering by a single vertical cylinder. Comparisons between the present results and experimental data show good agreement for the free surface elevations around the cylinder and the horizontal wave force on the cylinder. The model is then employed to investigate solitary wave interaction with a group of eleven vertical cylinders. The wave run-up and wave forces on the cylinders are discussed. 展开更多
关键词 CFD hybrid Eulerian-Lagrangian particle-in-cell solitary wave vertical cylinder
原文传递
HYDRODYNAMIC INTERACTION BETWEEN TWO VERTICALCYLINDERS IN WATER WAVES
7
作者 周显初 王冬娇 章梓雄 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1997年第10期927-940,共14页
The hydrodynamic interaction between two vertical cylinders in water waves is investigated based on the linearized potential flow theory. One of the two cylinders is fixed at the bottom while the other is articulated ... The hydrodynamic interaction between two vertical cylinders in water waves is investigated based on the linearized potential flow theory. One of the two cylinders is fixed at the bottom while the other is articulated at the bottom and oscillates with small amplitudes in the direction of the incident wave. Both the diffracted wave and the radiation wave are studied in the present paper. A simple analytical expression for the velocity potential on the surface of each cylinder is obtained by means of Graf's addition theorem. The wave-excited forces and moments on the cylinders, the added masses and the radiation damping coefficients of the oscillating cylinder are all expressed explicitly in series form. The coefficients of the series are determined by solving algebraic equations. Several numerical examples are given to illustrate the effects of various parameters, such as the separation distance, the relative size of the cylinders, and the incident angle, on the first-order and steady second-order forces, the added masses and radiation-damping coefficients as well as the response of the oscillating cylinder. 展开更多
关键词 wave-excited force added masses radiation damping drift force articulated cylinder two vertical cylinders
下载PDF
SECOND ORDER TRANSIENT WAVES AROUND A VERTICAL CYLINDER IN A TANK
8
作者 Q. W. Ma, G. X. Wu(Department of Mechanical Engineering University College London Torrington Place london WCIE 7JE ) 《Journal of Hydrodynamics》 SCIE EI CSCD 1995年第4期72-81,共10页
The free surface problem bound by two cylinders is analysed based on the velocity potential theory. An analytical solution in the take domain is obtained up to the second order in the perturbation expansion. The resul... The free surface problem bound by two cylinders is analysed based on the velocity potential theory. An analytical solution in the take domain is obtained up to the second order in the perturbation expansion. The results are compared with those obtainal from the fully nonlinear theory based on a finite element formulation.It is found that the second order solutiongives a fsr better agreement with the fully nonlinear solution. 展开更多
关键词 velocity potential analytical solution time domain fully nonlinear theory transient waves vertical cylinder
原文传递
Homotopy study of magnetohydrodynamic mixed convection nanofluid multiple slip flow and heat transfer from a vertical cylinder with entropy generation
9
作者 Nisha Shukla Puneet Rana +2 位作者 OAnwar Bég Bani Singh AKadir 《Propulsion and Power Research》 SCIE 2019年第2期147-162,共16页
Stimulated by thermal optimization in magnetic materials process engineering,the present investigation investigates theoretically the entropy generation in mixed convection magnetohydrodynamic(MHD)flow of an electrica... Stimulated by thermal optimization in magnetic materials process engineering,the present investigation investigates theoretically the entropy generation in mixed convection magnetohydrodynamic(MHD)flow of an electrically-conducting nanofluid from a vertical cylinder.The mathematical model includes the effects of viscous dissipation,second order velocity slip and thermal slip,has been considered.The cylindrical partial differential form of the two-component non-homogenous nanofluid model has been transformed into a system of coupled ordinary differential equations by applying similarity transformations.The effects of governing parameters with no-flux nanoparticle concentration have been examined on important quantities of interest.Furthermore,the dimensionless form of the entropy generation number has also been evaluated using homotopy analysis method(HAM).The present analytical results achieve good correlation with numerical results(shooting method).Entropy is found to be an increasing function of second order velocity slip,magnetic field and curvature parameter.Temperature is elevated with increasing curvature parameter and magnetic parameter whereas it is reduced with mixed convection parameter.The flow is accelerated with curvature parameter but decelerated with magnetic parameter.Heat transfer rate(Nusselt number)is enhanced with greater mixed convection parameter,curvature parameter and first order velocity slip parameter but reduced with increasing second order velocity slip parameter.Entropy generation is also increased with magnetic parameter,second order slip velocity parameter,curvature parameter,thermophoresis parameter,buoyancy parameter and Reynolds number whereas it is suppressed with first order velocity slip parameter,Brownian motion parameter and thermal slip parameter. 展开更多
关键词 Magnetohydrodynamic(MHD) NANOFLUID vertical cylinder Homotopy analysis method(HAM) Second order slip Entropy Curvature
原文传递
Diffraction of Water Waves by A Vertically Floating Cylinder in A Two-Layer Fluid 被引量:3
10
作者 石强 尤云祥 缪国平 《China Ocean Engineering》 SCIE EI 2008年第2期181-193,共13页
In this paper, the diffraction of water waves by a vertically floating cylinder in a two-layer fluid of a finite depth is studied. Analytical expressions for the hydrodynamic loads on the vertically floating cylinder ... In this paper, the diffraction of water waves by a vertically floating cylinder in a two-layer fluid of a finite depth is studied. Analytical expressions for the hydrodynamic loads on the vertically floating cylinder are obtained by use of the method of eigenfunction expansions. The hydrodynamic loads on the vertically floating cylinder in a two-layer fluid inelude not only the surge, heave and pitch exciting forces due to the incident wave of the surface-wave mode, but also those due to the incident wave of the internal-wave mode. This is different from the case of a homogenous fluid. Some given examples show that, for a two-layer fluid system with a small density difference, the hydrodynamic loads for the surface-wave mode do not differ significantly from those due to surface waves in a single-layer fluid, but the hydrodynamic loads for the internal-wave mode are important over a wide range of frequencies. Moreover, also considered are the free surface and interface elevations generated by the diffraction wave due to the incident wave of the surface-wave and interhal-wave modes, and transfer of energy between modes. 展开更多
关键词 two-layer fluid vertically floating cylinder hydrodynamic loads surface-wave mode internal-wave hurtle
下载PDF
Axisymmetry Breaking to Travelling Waves in the Cylinder with Partially Heated Sidewall
11
作者 马东军 孙德军 尹协远 《Chinese Physics Letters》 SCIE CAS CSCD 2006年第6期1515-1518,共4页
The transition from an axisymmetric stationary flow to three-dimensional time-dependent flows is carefully studied in a vertical cylinder partially heated from the side, with the aspect ratio A = 2 and Prandtl number ... The transition from an axisymmetric stationary flow to three-dimensional time-dependent flows is carefully studied in a vertical cylinder partially heated from the side, with the aspect ratio A = 2 and Prandtl number Pτ=0.021. The flow develops from the steady toroidal pattern beyond the first instability threshold, breaks the axisymmetric state at a Rayleigh number near 2000, and transits to standing or travelling azimuthal waves. A new result is observed that a slightly unstable flow pattern of standing waves exists and will transit to stable travelling waves after a long time evolution. The onset of oscillations is associated with a supercritical Hopf bifurcation in a system with O(2) symmetry. 展开更多
关键词 3-DIMENSIONAL NUMERICAL-SIMULATION BUOYANCY-DRIVEN CONVECTION NATURAL-CONVECTION vertical cylinder BRIDGMAN GROWTH INSTABILITIES BIFURCATIONS STABILITY FLOWS
下载PDF
Oscillations of elastically mounted cylinders in regular waves
12
作者 苏炜 詹杰民 李毓湘 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2014年第6期767-782,共16页
Under the assumption of potential flow and linear wave theory, a semi-analytic method based on eigenfunciton expansion is proposed to predict the hydrody-namic forces on an array of three bottom-mounted, surface-pierc... Under the assumption of potential flow and linear wave theory, a semi-analytic method based on eigenfunciton expansion is proposed to predict the hydrody-namic forces on an array of three bottom-mounted, surface-piercing circular cylinders. The responses of the cylinders induced by wave excitation are determined by the equa-tions of motion coupled with the solutions of the wave radiation and diffraction problems. Experiments for three-cylinder cases are then designed and performed in a wave flume to determine the accuracy of this method for regular waves. 展开更多
关键词 wave diffraction wave force eigenfunciton method flexible vertical mounted cylinder array
下载PDF
波浪对垂直圆柱的冲击作用研究进展
13
作者 马玉祥 台兵 +3 位作者 谢波涛 许条健 Marc Perlin 董国海 《哈尔滨工程大学学报(英文版)》 CSCD 2023年第1期1-13,共13页
Wave slamming is an important phenomenon due to its destructive power,and with the rapid development of offshore wind turbines,wave slamming on vertical cylinders has garnered lots of attention.However,the phenomenon ... Wave slamming is an important phenomenon due to its destructive power,and with the rapid development of offshore wind turbines,wave slamming on vertical cylinders has garnered lots of attention.However,the phenomenon of wave slamming on vertical cylinders is very complicated due to both the intrinsic complexity of breaking waves and that of slamming forces.The objective of this paper is to provide a general review of research related to this problem,including theoretical methods,experimental studies,numerical simulations,and full-scale measurements.Based on these approaches,the momentum theory/pressure impulse theory,spatial distribution characteristics of impacts to various breaking waves,wave generation methods,analysis methods for measured forces under structure response,scale effects in experiments,and in-situ measurements have been introduced and discussed.Results show that simplifications in existing models for wave impacting such as wave characteristics and structural response reduce its applicability and should be studied further both in theoretical,experimental and numerical researches. 展开更多
关键词 Breaking waves Slamming forces Wave-structure interaction vertical slender cylinders Offshore wind power
下载PDF
THE CALCULATION OF IN-LINE FORCE ON A VERTICAL CIRCULAR CYLINDER AND ANALYSIS OF HYDRODYNAMIC COEFFICIENTS C_D AND C_M IN WAVE-CURRENT CO-EXISTING FIELD 被引量:1
14
作者 Kang Hai-gui Li Yu-cheng Wang Hong-rong, Dalian University of Technology, Dalian 116024, P.R.China 《Journal of Hydrodynamics》 SCIE EI CSCD 1991年第2期29-41,共13页
The purpose of this paper is to find some better methods for calculating in-line forces on a vertical circular cylinder and for analysing the hydrodynamic coefficients C_D and C_M in wave-current co-existing field. In... The purpose of this paper is to find some better methods for calculating in-line forces on a vertical circular cylinder and for analysing the hydrodynamic coefficients C_D and C_M in wave-current co-existing field. In this pa- per, in order to calculate hydrodynamic forces, the authors try to find a way of applying a great number of the re- sults about C_D and C_M for wave-only field in the case of wave-current co-existing field, and the results about C_D and C_M obtained in regular waves in the ease of irregular waves. Such a way may be of significance in engineering and further research. 展开更多
关键词 THE CALCULATION OF IN-LINE FORCE ON A vertical CIRCULAR cylinder AND ANALYSIS OF HYDRODYNAMIC COEFFICIENTS C_D AND C_M IN WAVE-CURRENT CO-EXISTING FIELD LINE CO
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部