期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Vertical sections of Tb_(0.15)Ho_(0.85)Fe_y-Tb_(0.3)Dy_(0.7)Fe_y(y=1.85, 1.9, 2.0) in Tb-Dy-Ho-Fe system
1
作者 王博文 黄文美 +3 位作者 翁玲 孙英 曹淑瑛 王志华 《Journal of Rare Earths》 SCIE EI CAS CSCD 2015年第11期1170-1174,共5页
The x(Tb0.15Ho0.85Fey)+(1–x)(Tb0.3Dy0.7Fey)(x=0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9; y=1.85, 1.9, 2.0) samples were prepared by a vacuum arc furnace, and annealed at 1000 oC for 1 d and at 950 oC fo... The x(Tb0.15Ho0.85Fey)+(1–x)(Tb0.3Dy0.7Fey)(x=0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9; y=1.85, 1.9, 2.0) samples were prepared by a vacuum arc furnace, and annealed at 1000 oC for 1 d and at 950 oC for a week. Three vertical sections of Tb0.15Ho0.85Fey-Tb0.3Dy0.7Fey(y=1.85, 1.9, 2.0) in the Tb-Dy-Ho-Fe system were determined using optical microscopy, scanning electron microscopy, energy dispersion X-ray spectroscopy, X-ray diffraction, and differential thermal analysis. These vertical sections consisted of two single-phase regions: L and(Tb,Dy,Ho)Fe2; four two-phase regions: L+(Tb,Dy,Ho)Fe3, L+(Tb,Dy,Ho)Fe2,(Tb,Dy,Ho)Fe2+(Tb,Dy,Ho)Fe3, and(Tb,Dy,Ho)Fe2+(Tb,Dy,Ho). The high Ho content of(Tb,Dy,Ho)Fey alloys led to the elevation of the peritectic temperature of L+(Tb,Dy,Ho)Fe3→(Tb,Dy,Ho)Fe2. The region of(Tb,Dy,Ho)Fe2 phase was shifted towards the side of rich-Ho with the Fe content increasing. It meant that the substitution of Ho for Dy or Tb had a marked effect on the solidification process of(Tb,Dy,Ho)Fe2 compounds. 展开更多
关键词 Tb-Dy-Ho-Fe system phase relationship vertical section microstructure rare earths
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部