In VTI media,the conventional inversion methods based on the existing approximation formulas are difficult to accurately estimate the anisotropic parameters of reservoirs,even more so for unconventional reservoirs wit...In VTI media,the conventional inversion methods based on the existing approximation formulas are difficult to accurately estimate the anisotropic parameters of reservoirs,even more so for unconventional reservoirs with strong seismic anisotropy.Theoretically,the above problems can be solved by utilizing the exact reflection coefficients equations.However,their complicated expression increases the difficulty in calculating the Jacobian matrix when applying them to the Bayesian deterministic inversion.Therefore,the new reduced approximation equations starting from the exact equations are derived here by linearizing the slowness expressions.The relatively simple form and satisfactory calculation accuracy make the reduced equations easy to apply for inversion while ensuring the accuracy of the inversion results.In addition,the blockiness constraint,which follows the differentiable Laplace distribution,is added to the prior model to improve contrasts between layers.Then,the concept of GLI and an iterative reweighted least-squares algorithm is combined to solve the objective function.Lastly,we obtain the iterative solution expression of the elastic parameters and anisotropy parameters and achieve nonlinear AVA inversion based on the reduced equations.The test results of synthetic data and field data show that the proposed method can accurately obtain the VTI parameters from prestack AVA seismic data.展开更多
The anisotropic properties of subsurface media cause waveform distortions in seismic wave propagation,resulting in a negative infl uence on seismic imaging.In addition,wavefields simulated by the conventional coupled ...The anisotropic properties of subsurface media cause waveform distortions in seismic wave propagation,resulting in a negative infl uence on seismic imaging.In addition,wavefields simulated by the conventional coupled pseudo-acoustic equation are not only aff ected by SV-wave artifacts but are also limited by anisotropic parameters.We propose a least-squares reverse time migration(LSRTM)method based on the pure q P-wave equation in vertically transverse isotropic media.A fi nite diff erence and fast Fourier transform method,which can improve the effi ciency of the numerical simulation compared to a pseudo-spectral method,is used to solve the pure q P-wave equation.We derive the corresponding demigration operator,migration operator,and gradient updating formula to implement the LSRTM.Numerical tests on the Hess model and field data confirm that the proposed method has a good correction eff ect for the travel time deviation caused by underground anisotropic media.Further,it signifi cantly suppresses the migration noise,balances the imaging amplitude,and improves the imaging resolution.展开更多
In real strata anisotropy and viscosity extensively exists. They degraded waveforms in amplitude, resulting in which reducing of image resolution. To obtain high-precision imaging of deep reservoirs, we extended the s...In real strata anisotropy and viscosity extensively exists. They degraded waveforms in amplitude, resulting in which reducing of image resolution. To obtain high-precision imaging of deep reservoirs, we extended the separated viscous and anisotropic reverse time migration (RTM) to a stable viscoacoustic anisotropic RTM for vertical transverse isotropic (VTI) media, based on single generalized standard and linear solid (GSLS) media theory.. We used a pseudo-spectral method to develop the numerical simulation. By introducing a regularization operator to eliminate the high-frequency instability problem, we built a stable inverse propagator and achieved viscoacoustic VTI media RTM. High-resolution imaging results were obtained after correcting for the effects of anisotropy and viscosity. Synthetic tests verify the validity and accuracy of algorithm.展开更多
Spectral element method(SEM) for elastic media is well known for its great flexibility and high accuracy in solving problems with complex geometries.It is an advanced choice for wave simulations.Due to anelasticity ...Spectral element method(SEM) for elastic media is well known for its great flexibility and high accuracy in solving problems with complex geometries.It is an advanced choice for wave simulations.Due to anelasticity of earth media,SEM for elastic media is no longer appropriate.On fundamental of the second-order elastic SEM,this work takes the viscoelastic wave equations and the vertical transversely isotropic(VTI) media into consideration,and establishes the second-order SEM for wave modeling in viscoelastic VTI media.The second-order perfectly matched layer for viscoelastic VTI media is also introduced.The problem of handling the overlapped absorbed corners is solved.A comparison with the analytical solution in a twodimensional viscoelastic homogeneous medium shows that the method is accurate in the wave-field modeling.Furtherly,numerical validation also presents its great flexibility in solving wave propagation problems in complex heterogeneous media.This second-order SEM with perfectly matched layer for viscoelastic VTI media can be easily applied in wave modeling in a limited region.展开更多
The conventional pseudo-acoustic wave equations(PWEs) in vertical transversely isotropic(VTI)media may generate SV-wave artifacts and propagation instabilities when anisotropy parameters cannot satisfy the pseudo-...The conventional pseudo-acoustic wave equations(PWEs) in vertical transversely isotropic(VTI)media may generate SV-wave artifacts and propagation instabilities when anisotropy parameters cannot satisfy the pseudo-acoustic assumption. One solution to these issues is to use pure acoustic anisotropic wave equations, which can produce stable and pure P-wave responses without any SVwave pollutions. The commonly used pure acoustic wave equations(PAWEs) in VTI media are mainly derived from the decoupled P-SV dispersion relation based on first-order Taylor-series expansion(TE), thus they will suffer from accuracy loss in strongly anisotropic media. In this paper, we adopt arbitrary-order TE to expand the square root term in Alkhalifah's accurate acoustic VTI dispersion relation and solve the corresponding PAWE using the normalized pseudoanalytical method(NPAM) based on optimized pseudodifferential operator. Our analysis of phase velocity errors indicates that the accuracy of our new expression is perfectly acceptable for majority anisotropy parameters. The effectiveness of our proposed scheme also can be demonstrated by several numerical examples and reverse-time migration(RTM) result.展开更多
文摘In VTI media,the conventional inversion methods based on the existing approximation formulas are difficult to accurately estimate the anisotropic parameters of reservoirs,even more so for unconventional reservoirs with strong seismic anisotropy.Theoretically,the above problems can be solved by utilizing the exact reflection coefficients equations.However,their complicated expression increases the difficulty in calculating the Jacobian matrix when applying them to the Bayesian deterministic inversion.Therefore,the new reduced approximation equations starting from the exact equations are derived here by linearizing the slowness expressions.The relatively simple form and satisfactory calculation accuracy make the reduced equations easy to apply for inversion while ensuring the accuracy of the inversion results.In addition,the blockiness constraint,which follows the differentiable Laplace distribution,is added to the prior model to improve contrasts between layers.Then,the concept of GLI and an iterative reweighted least-squares algorithm is combined to solve the objective function.Lastly,we obtain the iterative solution expression of the elastic parameters and anisotropy parameters and achieve nonlinear AVA inversion based on the reduced equations.The test results of synthetic data and field data show that the proposed method can accurately obtain the VTI parameters from prestack AVA seismic data.
基金financially supported by the National Key R&D Program of China (No. 2019YFC0605503)the Major Scientific and Technological Projects of CNPC (No. ZD2019-183-003)the National Natural Science Foundation of China (No. 41922028,41874149)。
文摘The anisotropic properties of subsurface media cause waveform distortions in seismic wave propagation,resulting in a negative infl uence on seismic imaging.In addition,wavefields simulated by the conventional coupled pseudo-acoustic equation are not only aff ected by SV-wave artifacts but are also limited by anisotropic parameters.We propose a least-squares reverse time migration(LSRTM)method based on the pure q P-wave equation in vertically transverse isotropic media.A fi nite diff erence and fast Fourier transform method,which can improve the effi ciency of the numerical simulation compared to a pseudo-spectral method,is used to solve the pure q P-wave equation.We derive the corresponding demigration operator,migration operator,and gradient updating formula to implement the LSRTM.Numerical tests on the Hess model and field data confirm that the proposed method has a good correction eff ect for the travel time deviation caused by underground anisotropic media.Further,it signifi cantly suppresses the migration noise,balances the imaging amplitude,and improves the imaging resolution.
基金Research is sponsored by the National Natural Science Fund(No.41274117)the National Natural Science Fund(No.41574098)Sinopec Geophysical Key Laboratory Open Fund(No.wtyjy-wx2016-04-2)
文摘In real strata anisotropy and viscosity extensively exists. They degraded waveforms in amplitude, resulting in which reducing of image resolution. To obtain high-precision imaging of deep reservoirs, we extended the separated viscous and anisotropic reverse time migration (RTM) to a stable viscoacoustic anisotropic RTM for vertical transverse isotropic (VTI) media, based on single generalized standard and linear solid (GSLS) media theory.. We used a pseudo-spectral method to develop the numerical simulation. By introducing a regularization operator to eliminate the high-frequency instability problem, we built a stable inverse propagator and achieved viscoacoustic VTI media RTM. High-resolution imaging results were obtained after correcting for the effects of anisotropy and viscosity. Synthetic tests verify the validity and accuracy of algorithm.
基金financially supported by the National Natural Science Foundation of China (Grant No.41304077)Postdoctoral Science Foundation of China (Grant No.2013M531744,2014T70740)+1 种基金Key Laboratory of Geospace Environment and Geodesy (Grant No.12-02-03)Subsurface Multi-scale Imaging Laboratory (Grant No.SMIL-2014-01)
文摘Spectral element method(SEM) for elastic media is well known for its great flexibility and high accuracy in solving problems with complex geometries.It is an advanced choice for wave simulations.Due to anelasticity of earth media,SEM for elastic media is no longer appropriate.On fundamental of the second-order elastic SEM,this work takes the viscoelastic wave equations and the vertical transversely isotropic(VTI) media into consideration,and establishes the second-order SEM for wave modeling in viscoelastic VTI media.The second-order perfectly matched layer for viscoelastic VTI media is also introduced.The problem of handling the overlapped absorbed corners is solved.A comparison with the analytical solution in a twodimensional viscoelastic homogeneous medium shows that the method is accurate in the wave-field modeling.Furtherly,numerical validation also presents its great flexibility in solving wave propagation problems in complex heterogeneous media.This second-order SEM with perfectly matched layer for viscoelastic VTI media can be easily applied in wave modeling in a limited region.
基金supported by the National Natural Science Foundation of China (NSFC) under contract granted No. 41474110Research Foundation of China University of Petroleum-Beijing at Karamay under contract number RCYJ2018A-01-001
文摘The conventional pseudo-acoustic wave equations(PWEs) in vertical transversely isotropic(VTI)media may generate SV-wave artifacts and propagation instabilities when anisotropy parameters cannot satisfy the pseudo-acoustic assumption. One solution to these issues is to use pure acoustic anisotropic wave equations, which can produce stable and pure P-wave responses without any SVwave pollutions. The commonly used pure acoustic wave equations(PAWEs) in VTI media are mainly derived from the decoupled P-SV dispersion relation based on first-order Taylor-series expansion(TE), thus they will suffer from accuracy loss in strongly anisotropic media. In this paper, we adopt arbitrary-order TE to expand the square root term in Alkhalifah's accurate acoustic VTI dispersion relation and solve the corresponding PAWE using the normalized pseudoanalytical method(NPAM) based on optimized pseudodifferential operator. Our analysis of phase velocity errors indicates that the accuracy of our new expression is perfectly acceptable for majority anisotropy parameters. The effectiveness of our proposed scheme also can be demonstrated by several numerical examples and reverse-time migration(RTM) result.