The grain refinement and macrosegregation control of GCrl5 bearing steel were investigated under a type of rarely-used electromagnetic stirring, vertical electromagnetic stirring (V-EMS), in continuous casting. V-EM...The grain refinement and macrosegregation control of GCrl5 bearing steel were investigated under a type of rarely-used electromagnetic stirring, vertical electromagnetic stirring (V-EMS), in continuous casting. V-EMS can create an upward electromagnetic force and generate longitudinal loop convection, which ena- bles the better mixing of the upper part with the lower part of the liquid steel. The results showed that ap- plying V-EMS can enlarge the region of the equiaxed grain, decrease the secondary dendrite arm spacing (SDAS) and reduce the segregation of both carbon and sulfur. After applying V-EMS, liquid steel with a high solute concentration is brought to the dendrite tips, making the dendrite arms partially melt. The length of the dendrite fragment is approximately 1.8 mm, 10 to 12 times the SDAS. Upon increasing the amount of cooling water from 2.0 to 3.5 m3/h, the dendrite fragments exhibit an obvious aggregation fol- lowing V-EMS. Finally, a criterion for dendrite fragmentation under V-EMS was derived based on the dendrite fragmentation theory of Campanella et al.展开更多
A volume averaged columnar solidification model,which couples the flow,temperature and solute concentration fields,is applied to simulate experimental continuous casting cases with and without vertical electromagnetic...A volume averaged columnar solidification model,which couples the flow,temperature and solute concentration fields,is applied to simulate experimental continuous casting cases with and without vertical electromagnetic stirring(V-EMS).The calculated distribution of magnetic induction intensity and final macrosegregation maps are consistent with the experimental results.Calculation results reveal that the V-EMS promotes longitudinal melt flow,accelerates heat dissipation and solidification and finally reduces the central segregation of carbon.However,when V-EMS is applied,the solute distribution becomes asymmetric because the melt flow shows opposite directions between the near and far sides from stirrer.An obvious positive segregation band is observed at about 1/4 width of the billet near the stirrer in both calculated and experimental results.The position and degree of such positive segregation could be affected by installation height of stirrer,as demonstrated by additional simulation cases.展开更多
基金supported by the National Natural Science Foundation of China(No.50834009)the Key Project of the Ministry of Education of China(No.311014)the 111 Project of China(No.B07015)
文摘The grain refinement and macrosegregation control of GCrl5 bearing steel were investigated under a type of rarely-used electromagnetic stirring, vertical electromagnetic stirring (V-EMS), in continuous casting. V-EMS can create an upward electromagnetic force and generate longitudinal loop convection, which ena- bles the better mixing of the upper part with the lower part of the liquid steel. The results showed that ap- plying V-EMS can enlarge the region of the equiaxed grain, decrease the secondary dendrite arm spacing (SDAS) and reduce the segregation of both carbon and sulfur. After applying V-EMS, liquid steel with a high solute concentration is brought to the dendrite tips, making the dendrite arms partially melt. The length of the dendrite fragment is approximately 1.8 mm, 10 to 12 times the SDAS. Upon increasing the amount of cooling water from 2.0 to 3.5 m3/h, the dendrite fragments exhibit an obvious aggregation fol- lowing V-EMS. Finally, a criterion for dendrite fragmentation under V-EMS was derived based on the dendrite fragmentation theory of Campanella et al.
基金financial support from the National Natural Science Foundation of China(Grant No.U1760206)the National Key R&D Program of China(Grant No.2017YFE0107900)+1 种基金the 111 Project 2.0 of China(Grant No.BP0719037)the financial support provided by the ESA-MAP MICAST project contract 14347/01/NL/SH.
文摘A volume averaged columnar solidification model,which couples the flow,temperature and solute concentration fields,is applied to simulate experimental continuous casting cases with and without vertical electromagnetic stirring(V-EMS).The calculated distribution of magnetic induction intensity and final macrosegregation maps are consistent with the experimental results.Calculation results reveal that the V-EMS promotes longitudinal melt flow,accelerates heat dissipation and solidification and finally reduces the central segregation of carbon.However,when V-EMS is applied,the solute distribution becomes asymmetric because the melt flow shows opposite directions between the near and far sides from stirrer.An obvious positive segregation band is observed at about 1/4 width of the billet near the stirrer in both calculated and experimental results.The position and degree of such positive segregation could be affected by installation height of stirrer,as demonstrated by additional simulation cases.