Heat exchange performance of vertical U-tube heat exchanger was studied with two different borehole fill materials and CFD software. Borehole surface temperature and water temperature distribution were simulated on th...Heat exchange performance of vertical U-tube heat exchanger was studied with two different borehole fill materials and CFD software. Borehole surface temperature and water temperature distribution were simulated on the condition of continuous operation for 8 h in winter with inlet water temperature being 10℃. The results show that there is no obvious difference on heat exchanger performance between the two different borehole fill materials.展开更多
As a renewable energy source,geothermal energy has been widely used to provide space heating and cooling for buildings.The thermal performance of ground heat exchanger(GHE)is significant for the operating efficiency o...As a renewable energy source,geothermal energy has been widely used to provide space heating and cooling for buildings.The thermal performance of ground heat exchanger(GHE)is significant for the operating efficiency of the ground source heat pump(GSHP)systems.This paper presents a comprehensive review of developments and advances of three kinds of GHE,including vertical borehole GHE(VBGHE),Pile GHE(PGHE),and deep borehole GHE(DBGHE)which are currently popular in larger GSHP systems.Firstly,analytical models proposed to ana-lyze heat transfer process of VBGHE with different geological conditions are summarized,such as homogenous or heterogeneous ground,with or without groundwater advection.Numerical and short-time step models and measures to improve GHE thermal performance are also reviewed.Secondly,a summary of research advances in PGHE is provided,which includes the heat transfer models of PGHE,the effects of geometric structure,oper-ation modes,pile spacing,use of phase change material(PCM),thermal properties of PCM,thermo-mechanical behavior and/or thermal performance of PGHE.The effects of groundwater flow direction and velocity on PGHE are also summarized in brief.Lastly,models of three kinds of DBGHEs,i.e.,deep coaxial GHE(DCGHE),deep U-bend GHE(DUGHE)and super-long gravity heat pipe(SLGHP),are reviewed.The physical bases of the dif-ferent analytical models are elaborated and also their advantages and disadvantages are described.Advances in numerical modelling and improving numerical model calculation speed of DCBHE,DCBHE array,and DUBHE are summarized.The review provides a meaningful reference for the further study of GHEs.展开更多
The thermal performance of a“U”type earth-to-air heat exchanger is presented in this experimental study.The device has a serial-connected vertical configuration.The wells where tubes were installed have a depth of f...The thermal performance of a“U”type earth-to-air heat exchanger is presented in this experimental study.The device has a serial-connected vertical configuration.The wells where tubes were installed have a depth of fewer than 3 m and are separated every 1.5 m,using an installation area of 3m2.The experimentation was carried out in March in Morelos,Mexico when the environmental temperature reaches 35℃ during the day.The performance of the device was measured and compared to the requirements of an office for cooling purposes within a university campus to reproduce the space restrictions found in urbanized areas.By using a small land surface,it is feasible for urbanized areas.The air temperature inside the“U”type earth-to-air heat exchanger,the surrounding soil temperature,the airspeed,and the power consumed by the fan were measured.The air temperature and the fan’s power consumption data were obtained by modifying the airspeed in four constant values,from 1.3 m/s to 6.6 m/s.Results show that the device evaluated in this work has adequate thermal performance for cooling purposes compared to the requirements of an office.A decrease in air temperature was recorded in a range of 5.1℃ to 9.4℃.Over 70%of the total temperature difference was reached in the first well,where the average soil thermal disturbance at 5 cm was 2.8℃.The device achieved a maximum COP of 12.8 and a maximum effectiveness of 88.4%.With these results,it is concluded that the system is suitable for cooling purposes in areas with space restrictions.This work is novel since the dimensions available for installation in urbanized areas are considered and compared with the thermal requirements of an office.In addition to the fact that there are no published works with vertical heat exchangers connected in series.展开更多
In this study, a series of numerical analyses was performed in order to evaluate the performance of full-scale closed-loop vertical ground heat exchangers constructed in Wonju, South Korea. The circulating HDPE pipe, ...In this study, a series of numerical analyses was performed in order to evaluate the performance of full-scale closed-loop vertical ground heat exchangers constructed in Wonju, South Korea. The circulating HDPE pipe, borehole and surrounding ground formation were modeled using FLUENT, a finite-volume method (FVM) program, for analyzing the heat transfer process of the ground heat exchanger system. Two user-defined functions (UDFs) accounting for the difference in the temperature of the circulating inflow and outflow fluid and the variation of ground temperature with depth were adopted in the FLUENT modeling. The thermal conductivities of grouts (cement vs. bentonite) measured in laboratory were used as input values in the numerical analyses to compare the thermal efficiency of the cement and bentonite grouts used for installing the closed-loop vertical ground heat exchanger. A series of numerical analyses was carried out to simulate in-situ thermal response tests performed in the construction site. From the comparison between the in-situ thermal response test results and numerical simulations, the average thermal conductivity of the ground formation in the construction site is back-calculated as approximately 4 W/mK. This value can be used in evaluating the long-term performance of the closed-loop vertical ground heat ex changer.展开更多
基金Project(CSTC 2004AA7008 2 2) supported by Key Technologies for Development of Small Cities of ChongqingMunicipality
文摘Heat exchange performance of vertical U-tube heat exchanger was studied with two different borehole fill materials and CFD software. Borehole surface temperature and water temperature distribution were simulated on the condition of continuous operation for 8 h in winter with inlet water temperature being 10℃. The results show that there is no obvious difference on heat exchanger performance between the two different borehole fill materials.
基金supported by the Natural Science Foundation of Shandong Province,China(ZR2020ME219)City school integration development strategy project(JNSX2021049)National Natural Science Foundation of China(No.51978599).
文摘As a renewable energy source,geothermal energy has been widely used to provide space heating and cooling for buildings.The thermal performance of ground heat exchanger(GHE)is significant for the operating efficiency of the ground source heat pump(GSHP)systems.This paper presents a comprehensive review of developments and advances of three kinds of GHE,including vertical borehole GHE(VBGHE),Pile GHE(PGHE),and deep borehole GHE(DBGHE)which are currently popular in larger GSHP systems.Firstly,analytical models proposed to ana-lyze heat transfer process of VBGHE with different geological conditions are summarized,such as homogenous or heterogeneous ground,with or without groundwater advection.Numerical and short-time step models and measures to improve GHE thermal performance are also reviewed.Secondly,a summary of research advances in PGHE is provided,which includes the heat transfer models of PGHE,the effects of geometric structure,oper-ation modes,pile spacing,use of phase change material(PCM),thermal properties of PCM,thermo-mechanical behavior and/or thermal performance of PGHE.The effects of groundwater flow direction and velocity on PGHE are also summarized in brief.Lastly,models of three kinds of DBGHEs,i.e.,deep coaxial GHE(DCGHE),deep U-bend GHE(DUGHE)and super-long gravity heat pipe(SLGHP),are reviewed.The physical bases of the dif-ferent analytical models are elaborated and also their advantages and disadvantages are described.Advances in numerical modelling and improving numerical model calculation speed of DCBHE,DCBHE array,and DUBHE are summarized.The review provides a meaningful reference for the further study of GHEs.
文摘The thermal performance of a“U”type earth-to-air heat exchanger is presented in this experimental study.The device has a serial-connected vertical configuration.The wells where tubes were installed have a depth of fewer than 3 m and are separated every 1.5 m,using an installation area of 3m2.The experimentation was carried out in March in Morelos,Mexico when the environmental temperature reaches 35℃ during the day.The performance of the device was measured and compared to the requirements of an office for cooling purposes within a university campus to reproduce the space restrictions found in urbanized areas.By using a small land surface,it is feasible for urbanized areas.The air temperature inside the“U”type earth-to-air heat exchanger,the surrounding soil temperature,the airspeed,and the power consumed by the fan were measured.The air temperature and the fan’s power consumption data were obtained by modifying the airspeed in four constant values,from 1.3 m/s to 6.6 m/s.Results show that the device evaluated in this work has adequate thermal performance for cooling purposes compared to the requirements of an office.A decrease in air temperature was recorded in a range of 5.1℃ to 9.4℃.Over 70%of the total temperature difference was reached in the first well,where the average soil thermal disturbance at 5 cm was 2.8℃.The device achieved a maximum COP of 12.8 and a maximum effectiveness of 88.4%.With these results,it is concluded that the system is suitable for cooling purposes in areas with space restrictions.This work is novel since the dimensions available for installation in urbanized areas are considered and compared with the thermal requirements of an office.In addition to the fact that there are no published works with vertical heat exchangers connected in series.
基金supported by the Construction Technology Innovation Program from KICTEP (Grant No. 06CTIPD04)the National Research Foundation of Korea Grant funded by the Korean Government (Grant No. 2010-0011159)
文摘In this study, a series of numerical analyses was performed in order to evaluate the performance of full-scale closed-loop vertical ground heat exchangers constructed in Wonju, South Korea. The circulating HDPE pipe, borehole and surrounding ground formation were modeled using FLUENT, a finite-volume method (FVM) program, for analyzing the heat transfer process of the ground heat exchanger system. Two user-defined functions (UDFs) accounting for the difference in the temperature of the circulating inflow and outflow fluid and the variation of ground temperature with depth were adopted in the FLUENT modeling. The thermal conductivities of grouts (cement vs. bentonite) measured in laboratory were used as input values in the numerical analyses to compare the thermal efficiency of the cement and bentonite grouts used for installing the closed-loop vertical ground heat exchanger. A series of numerical analyses was carried out to simulate in-situ thermal response tests performed in the construction site. From the comparison between the in-situ thermal response test results and numerical simulations, the average thermal conductivity of the ground formation in the construction site is back-calculated as approximately 4 W/mK. This value can be used in evaluating the long-term performance of the closed-loop vertical ground heat ex changer.