期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Biomechanical effects of posterior lumbar interbody fusion with vertical placement of pedicle screws compared to traditional placement
1
作者 Ji-Hong Jiang Chang-Ming Zhao +2 位作者 Jun Zhang Rong-Ming Xu Lei Chen 《World Journal of Clinical Cases》 SCIE 2024年第20期4108-4120,共13页
BACKGROUND The pedicle screw technique is widely employed for vertebral body fixation in the treatment of spinal disorders.However,traditional screw placement methods require the dissection of paraspinal muscles and t... BACKGROUND The pedicle screw technique is widely employed for vertebral body fixation in the treatment of spinal disorders.However,traditional screw placement methods require the dissection of paraspinal muscles and the insertion of pedicle screws at specific transverse section angles(TSA).Larger TSA angles require more force to pull the muscle tissue,which can increase the risk of surgical trauma and ischemic injury to the lumbar muscles.AIM To study the feasibility of zero-degree TSA vertical pedicle screw technique in the lumbosacral segment.METHODS Finite element models of vertebral bodies and pedicle screw-rod systems were established for the L4-S1 spinal segments.A standard axial load of 500 N and a rotational torque of 10 N/m were applied.Simulated screw pull-out experiment was conducted to observe pedicle screw resistance to pull-out,maximum stress,load-displacement ratio,maximum stress in vertebral bodies,load-displacement ratio in vertebral bodies,and the stress distribution in pedicle screws and vertebral bodies.Differences between the 0-degree and 17-degree TSA were compared.RESULTS At 0-degree TSA,the screw pull-out force decreased by 11.35%compared to that at 17-degree TSA(P<0.05).At 0-degree and 17-degree TSA,the stress range in the screw-rod system was 335.1-657.5 MPa and 242.8-648.5 MPa,separately,which were below the fracture threshold for the screw-rod system(924 MPa).At 0-degree and 17-degree TSA,the stress range in the vertebral bodies was 68.45-78.91 MPa and 39.08-72.73 MPa,separately,which were below the typical bone yield stress range for vertebral bodies(110-125 MPa).At 0-degree TSA,the load-displacement ratio for the vertebral bodies and pedicle screws was slightly lower compared to that at 17-degree TSA,indicating slightly lower stability(P<0.05).CONCLUSION The safety and stability of 0-degree TSA are slightly lower,but the risks of screw-rod system fracture,vertebral body fracture,and rupture are within acceptable limits. 展开更多
关键词 vertical pedicle screw Pedicle screw technique Transverse section angle Lumbosacral segment Finite element analysis
下载PDF
Acceleration-Dependent Analysis of Vertical Ball Screw Feed System without Counterweight 被引量:1
2
作者 Cunfan Zou Huijie Zhang +3 位作者 Jun Zhang Dongdong Song Hui Liu Wanhua Zhao 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2021年第3期243-255,共13页
The distinguishing feature of a vertical ball screw feed system without counterweight is that the spindle system weight directly acts on the kinematic joints.Research into the dynamic characteristics under acceleratio... The distinguishing feature of a vertical ball screw feed system without counterweight is that the spindle system weight directly acts on the kinematic joints.Research into the dynamic characteristics under acceleration and deceleration is an important step in improving the structural performance of vertical milling machines.The magnitude and direction of the inertial force change significantly when the spindle system accelerates and decelerates.Therefore,the kinematic joint contact stiffness changes under the action of the inertial force and the spindle system weight.Thus,the system transmission stiffness also varies and affects the dynamics.In this study,a variable-coefficient lumped parameter dynamic model that considers the changes in the spindle system weight and the magnitude and direction of the inertial force is established for a ball screw feed system without counterweight.In addition,a calculation method for the system stiffness is provided.Experiments on a vertical ball screw feed system under acceleration and deceleration with different accelerations are also performed to verify the proposed dynamic model.Finally,the influence of the spindle system position,the rated dynamic load of the screw-nut joint,and the screw tension force on the natural frequency of the vertical ball screw feed system under acceleration and deceleration are studied.The results show that the vertical ball screw feed system has obviously different variable dynamics under acceleration and deceleration.The influence of the rated dynamic load and the spindle system position on the natural frequency under acceleration and deceleration is much greater than that of the screw tension force. 展开更多
关键词 vertical ball screw feed system Acceleration and deceleration Joints stiffness Variable-coefficient lumped parameter model Power spectral density Natural frequency
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部