期刊文献+
共找到27篇文章
< 1 2 >
每页显示 20 50 100
Dynamic Impact of the Vertical Shear of Gradient Wind on the Tropical Cyclone Boundary Layer Wind Field 被引量:1
1
作者 蔡凝昊 徐昕 +3 位作者 宋丽莉 白莉娜 明杰 王元 《Journal of Meteorological Research》 SCIE 2014年第1期127-138,共12页
This work studies the impact of the vertical shear of gradient wind (VSGW) in the free atmosphere on the tropical cyclone boundary layer (TCBL). A new TCBL model is established, which relies on five- force balance... This work studies the impact of the vertical shear of gradient wind (VSGW) in the free atmosphere on the tropical cyclone boundary layer (TCBL). A new TCBL model is established, which relies on five- force balance including the pressure gradient force, Coriolis force, centrifugal force, turbulent friction, and inertial deviation force. This model is then employed to idealize tropical cyclones (TCs) produced by DeMaria's model, under different VSGW conditions (non-VSGW, positive VSGW, negative VSGW, and VSGW increase/decrease along the radial direction). The results show that the free-atmosphere VSGW is particularly important to the intensity of TC. For negative VSGW, the total horizontal velocity in the TCBL is somewhat suppressed. However, with the maximum radial inflow displaced upward and outward, the radial velocity notably intensifies. Consequently, the convergence is enhanced throughout the TCBL, giving rise to a stronger vertical pumping at the TCBL top. In contrast, for positive VSGW, the radial inflow is significantly suppressed, even with divergent outflow in the middle-upper TCBL. For varying VSGW along the radial direction, the results indicate that the sign and value of VSGW is more important than its radial distribution, and the negative VSGW induces stronger convergence and Ekman pumping in the TCBL. which favors the formation and intensification of TC. 展开更多
关键词 tropical cyclone vertical shear gradient wind boundary layer
原文传递
Influence of Vertical Shear of Basic Tangential Wind on the Development and Maintenance of Typhoon 被引量:1
2
作者 陶建军 王芳 +1 位作者 李朝奎 胡向辉 《Acta meteorologica Sinica》 SCIE 2013年第2期273-281,共9页
By using a linear symmetric Conditional Instability of Second Kind (CISK) model containing basic flow, we study the interactions between basic flow and mesoscale disturbances in typhoon. The result shows that in the... By using a linear symmetric Conditional Instability of Second Kind (CISK) model containing basic flow, we study the interactions between basic flow and mesoscale disturbances in typhoon. The result shows that in the early stage of typhoon formation, the combined action of vertical shear of basic flow at low level and CISK impels the disturbances to grow rapidly and to move toward the center of typhoon. The development of disturbances, likewise, influences on typhoon's development and structure. Analysis of the mesoscale disturbances' development and propagation indicates that the maximum wind region moves toward the center, wind velocity increases, and circulation features of an eye appear. Similarly~ when a typhoon decays, the increase of low-level vertical wind shear facilitates the development of mesoscale disturbances. In turn, these mesoscale disturbances will provide typhoon with energy and make the typhoon intensify again. Therefore, it can be said that typhoon has the renewable or self-repair function. 展开更多
关键词 TYPHOON mesoscale disturbances Conditional Instability of Second Kind vertical shear
原文传递
Dependence of Tropical Cyclone Intensification on the Latitude under Vertical Shear
3
作者 Mingyu BI Xuyang GE Tim LI 《Journal of Meteorological Research》 SCIE CSCD 2018年第1期113-123,共11页
The sensitivity of tropical cyclone(TC) intensification to the ambient rotation effect under vertical shear is investigated. The results show that the vortices develop more rapidly with intermediate planetary vortic... The sensitivity of tropical cyclone(TC) intensification to the ambient rotation effect under vertical shear is investigated. The results show that the vortices develop more rapidly with intermediate planetary vorticity, which suggests an optimal latitude for the TC development in the presence of vertical shear. This is different from the previous studies in which no mean flow is considered. It is found that the ambient rotation has two main effects. On the one hand,the boundary layer imbalance is largely controlled by the Coriolis parameter. For TCs at lower latitudes, due to the weaker inertial instability, the boundary inflow is promptly established, which results in a stronger moisture convergence and thus greater diabatic heating in the inner core region. On the other hand, the Coriolis parameter modulates the vertical realignment of the vortex with a higher Coriolis parameter, favoring a quicker vertical realignment and thus a greater potential for TC development. The combination of these two effects results in an optimal latitude for TC intensification in the presence of a vertical shear investigated. 展开更多
关键词 tropical cyclone intensification vertical shear Coriolis parameter
原文传递
Effects of Vertical Wind Shear on Intensity and Rainfall Asymmetries of Strong Tropical Storm Bilis (2006) 被引量:8
4
作者 余锦华 谈哲敏 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2010年第3期552-561,共10页
The effects of environmental vertical wind shear (VWS) on the intensity and rainfall asymmetries in Tropical Storm (TS) Bilis (2006) have been analyzed based on TRMM/TMI-estimated surface rainfall data, QuikSCAT... The effects of environmental vertical wind shear (VWS) on the intensity and rainfall asymmetries in Tropical Storm (TS) Bilis (2006) have been analyzed based on TRMM/TMI-estimated surface rainfall data, QuikSCAT wind fields, 850- and 200-hPa winds of the NCEP-NCAR reanalysis, precipitation data at 5-min intervals from automatic weather stations over China's Mainland, and the best track data of TS Bilis (2006). The results show that the simultaneous and 6-hour-lagged correlation coefficients between VWS and storm intensity (the minimum central sea level pressure) are 0.59145 and 0.57438 (P 〈0.01), respectively. The averaged VWS was found to be about 11 m s-1 and thus suppressed the intensification of Bilis (2006). Distribution of precipitation in Bilis (2006) was highly asymmetric. The azimuthally-averaged rainfall rate in the partial eyewall, however, was smaller than that in a major outer rainband. As the storm intensified, the major rainband showed an unusual outward propagation. The VWS had a great impact on the asymmetric distribution of precipitation. Consistent with previous modeling studies, heavy rainfall generally occurred downshear to downshear-left of the VWS vector both near and outside the eyewall, showing a strong wavenumber-one asymmetry, which was amplified as the VWS increased. 展开更多
关键词 vertical wind shear tropical storm rainfall distribution
下载PDF
EFFECTS OF VERTICAL WIND SHEAR ON INTENSITY AND STRUCTURE OF TROPICAL CYCLONE 被引量:7
5
作者 陈启智 方娟 《Journal of Tropical Meteorology》 SCIE 2012年第2期172-186,共15页
In this study,the effect of vertical wind shear(VWS)on the intensification of tropical cyclone(TC)is investigated via the numerical simulations.Results indicate that weak shear tends to facilitate the development of T... In this study,the effect of vertical wind shear(VWS)on the intensification of tropical cyclone(TC)is investigated via the numerical simulations.Results indicate that weak shear tends to facilitate the development of TC while strong shear appears to inhibit the intensification of TC.As the VWS is imposed on the TC,the vortex of the cyclone tends to tilt vertically and significantly in the upper troposphere.Consequently,the upward motion is considerably enhanced in the downshear side of the storm center and correspondingly,the low-to mid-level potential temperature decreases under the effect of adiabatic cooling,which leads to the increase of the low-to mid-level static instability and relative humidity and then facilitates the burst of convection.In the case of weak shear,the vertical tilting of the vortex is weak and the increase of ascent,static instability and relative humidity occur in the area close to the TC center.Therefore,active convection happens in the TC center region and facilitates the enhancement of vorticity in the inner core region and then the intensification of TC.In contrast,due to strong VWS,the increase of the ascent,static instability and relative humidity induced by the vertical tilting mainly appear in the outer region of TC in the case with stronger shear,and the convection in the inner-core area of TC is rather weak and convective activity mainly happens in the outer-region of the TC.Therefore,the development of a warm core is inhibited and then the intensification of TC is delayed.Different from previous numerical results obtained by imposing VWS suddenly to a strong TC,the simulation performed in this work shows that,even when the VWS is as strong as 12 m s-1,the tropical storm can still experience rapid intensification and finally develop into a strong tropical cyclone after a relatively long period of adjustment.It is found that the convection plays an important role in the adjusting period.On one hand,the convection leads to the horizontal convergence of the low-level vorticity flux and therefore leads to the enhancement of the low-level vorticity in the inner-core area of the cyclone.On the other hand,the active ascent accompanying the convection tends to transport the low-level vorticity to the middle levels.The enhanced vorticity in the lower to middle troposphere strengths the interaction between the low-and mid-level cyclonical circulation and the upper-level circulation deviated from the storm center under the effect of VWS.As a result,the vertical tilting of the vortex is considerably decreased,and then the cyclone starts to develop rapidly. 展开更多
关键词 vertical wind shear tropical cyclone vortex tilting CONVECTION
下载PDF
EFFECTS OF VERTICAL WIND SHEAR ON TROPICAL CYCLONE INTENSITY CHANGE 被引量:1
6
作者 白莉娜 王元 《Journal of Tropical Meteorology》 SCIE 2016年第1期11-18,共8页
The effects of vertical wind shear on tropical cyclone(TC) intensity change are examined based on the TC data from the China Meteorological Administration and the NCEP reanalysis daily data from 2001 to 2006.First,the... The effects of vertical wind shear on tropical cyclone(TC) intensity change are examined based on the TC data from the China Meteorological Administration and the NCEP reanalysis daily data from 2001 to 2006.First,the influence of wind shear between different vertical levels and averages in different horizontal areas are compared.The results indicate that the effect of wind shear between 200 and 850 hPa averaged within a 200-800 km annulus on TC intensity change is larger than any other calculated vertical wind shear.High-latitude and intense TCs tend to be less sensitive to the effects of VWS than low-latitude and weak TCs.TCs experience time lags between the imposition of the shear and the weakening in TC intensity.A vertical shear of 8-9 m/s(9-10 m/s) would weaken TC intensity within 60 h(48 h).A vertical shear greater than 10 m/s would weaken TC intensity within 6 h.Finally,a statistical TC intensity prediction scheme is developed by using partial least squares regression,which produces skillful intensity forecasts when potential predictors include factors related to the vertical wind shear.Analysis of the standardized regression coefficients further confirms the obtained statistical results. 展开更多
关键词 tropical cyclone intensity change statistical analysis environmental vertical wind shear TC intensity prediction scheme
下载PDF
Efects of Vertical Wind Shear, Radiation and Ice Microphysics on Precipitation Efciency during a Torrential Rainfall Event in China
7
作者 周玉淑 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2013年第6期1809-1820,共12页
The effects of vertical wind shear, radiation and ice microphysics on precipitation efficiency (PE) were investigated through analysis of modeling data of a torrential rainfall event over Jinan, China during July 20... The effects of vertical wind shear, radiation and ice microphysics on precipitation efficiency (PE) were investigated through analysis of modeling data of a torrential rainfall event over Jinan, China during July 2007. Vertical wind shear affected PE by changing the kinetic energy conversion between the mean and perturbation circulations. Clou^radiation interaction impacted upon PE, but the relationship related to cloud radiative effects on PE was not statistically significant. The reduction in deposition processes as- sociated with the removal of ice microphysics suppressed efficiency. The relationships related to effects of vertical wind shear, radiation and ice clouds on PEs defined in cloud and surface rainfall budgets were more statistically significant than that defined in the rain microphysical budget. 展开更多
关键词 vertical wind shear RADIATION ice microphysics precipitation efficiency
下载PDF
INFLUENCE OF THE VERTICAL SHEAR OF ENVIRONMENTAL FLOWS ON TYPHOON MOTION
8
作者 蒋群 董克勤 《Acta meteorologica Sinica》 SCIE 1991年第2期228-241,共14页
Typhoon is regarded as a convergent,modified Rankine vortex.Based on the vorticity equations written at two levels,higher and lower in the troposphere,typhoon motions are discussed in this study.The analytical express... Typhoon is regarded as a convergent,modified Rankine vortex.Based on the vorticity equations written at two levels,higher and lower in the troposphere,typhoon motions are discussed in this study.The analytical expressions of vortex motion direction and speed have been derived for simple homogeneous basic flows at two levels.The expressions indicate that in the easterties,vertical wind shear enhances the steering of east flow, causing the vortex moving westward faster,otherwise,in the westerlies,it reduces the steering of the west flow, causing the vortex moving eastward slower.These results explain theoretically that“cyclones in the easterlies move to the right of,and faster than the basic flow;conversely,cyclones in the westerlies move to the left of,and slower than the basic flow.” With derived baroclinic diagnostic equations and a barotropical model,ten cases from 1980 to 1983 have been calculated for 24h typhoon motions.The results show that the baroclinic models are better than the baro- tropic ones.Therefore,the vertical wind shear is one of the important factors affecting typhoon movement. 展开更多
关键词 typhoon motion vertical wind shear beta-effect track forecasting
原文传递
A Lagrangian Trajectory Analysis of Azimuthally Asymmetric Equivalent Potential Temperature in the Outer Core of Sheared Tropical Cyclones
9
作者 Yufan DAI Qingqing LI +1 位作者 Xinhang LIU Lijuan WANG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2023年第9期1689-1706,共18页
In this study,the characteristics of azimuthally asymmetric equivalent potential temperature(θ_(e))distributions in the outer core of tropical cyclones(TCs)encountering weak and strong vertical wind shear are examine... In this study,the characteristics of azimuthally asymmetric equivalent potential temperature(θ_(e))distributions in the outer core of tropical cyclones(TCs)encountering weak and strong vertical wind shear are examined using a Lagrangian trajectory method.Evaporatively forced downdrafts in the outer rainbands can transport low-entropy air downward,resulting in the lowestθ_(e)in the downshear-left boundary layer.Quantitative estimations ofθ_(e)recovery indicate that air parcels,especially those originating from the downshear-left outer core,can gradually revive from a low entropy state through surface enthalpy fluxes as the parcels move cyclonically.As a result,the maximumθ_(e)is observed in the downshear-right quadrant of a highly sheared TC.The trajectory analyses also indicate that parcels that move upward in the outer rainbands and those that travel through the inner core due to shear make a dominant contribution to the midlevel enhancement ofθ_(e)in the downshear-left outer core.In particular,the former plays a leading role in suchθ_(e)enhancements,while the latter plays a secondary role.As a result,moist potential stability occurs in the middle-to-lower troposphere in the downshear-left outer core. 展开更多
关键词 tropical cyclone vertical wind shear outer core asymmetric equivalent potential temperature trajectory analysis
下载PDF
南通市一次罕见大冰雹天气的成因分析(英文) 被引量:1
10
作者 吴彩霞 范德新 汤建国 《Meteorological and Environmental Research》 CAS 2010年第9期62-66,共5页
By using the ground and high-altitude observation data,NCEP 6 h reanalysis data and CINRAD/SA radar observation data,the circulation situation,the atmospheric stability degree and the radar echo characteristics of a s... By using the ground and high-altitude observation data,NCEP 6 h reanalysis data and CINRAD/SA radar observation data,the circulation situation,the atmospheric stability degree and the radar echo characteristics of a strong convection weather which occurred in Nantong area of Jiangsu Province on June 14 in 2009 were analyzed.The results showed that the hailstone happened in the large scale background of coastal trough rear which was established by the northeast low vortex.The warm air in the middle-low layer was covered with the cold air in 500 hPa,which provided the favorable condition for the occurrence of strong convection weather which included the hailstone,the thunderstorm,the strong wind and so on.Seen from the analysis on the radar echo,the windstorm which induced this strong convective weather had the characteristics of super monomer windstorm.In the northwest and the southeast,there were 2 obvious outflow boundaries and the overhanging structure characteristics.The strong vertical shear and the suitable frozen layer height in the middle-low layer of troposphere were also favorable to fall the hailstone. 展开更多
关键词 Big hailstone Unstable stratification Overhanging characteristic Bounded weak echo region vertical shear of wind China
下载PDF
Seasonal variation of eddy kinetic energy in the South China Sea 被引量:11
11
作者 WANG Hui WANG Dakui +2 位作者 LIU Guimei WU Huiding LI Ming 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2012年第1期1-15,共15页
Mesoscale eddy activity and its modulation mechanism in the South China Sea (SCS) are inves- tigated with newly reprocessed satellite altimetry observations and hydrographic data. The eddy kinetic energy (EKE) lev... Mesoscale eddy activity and its modulation mechanism in the South China Sea (SCS) are inves- tigated with newly reprocessed satellite altimetry observations and hydrographic data. The eddy kinetic energy (EKE) level of basin-wide averages show a distinct seasonal cycle with the maximum in August-December and the minimum in February-May. Furthermore, the seasonal pattern of EKE in the basin is dominated by region offshore of central Vietnam (OCV), southwest of Taiwan Island (SWT), and southwest of Luzon (SWL), which are also the breeding grounds of mesoscale eddies in the SCS. Instability theory analysis suggests that the seasonal cycle of EKE is modulated by the baroclinic instability of the mean flow. High eddy growth rate (EGR) is found in the active eddy regions. Vertical velocity shear in the upper 50-500 m is crucial for the growth of baroclinic instability, leading to seasonal EKE evolution in the SCS. 展开更多
关键词 South China Sea eddy kinetic energy baroclinic instability vertical shear
下载PDF
Infragravity waves with internal wave characteristics in the south of the Bohai Sea of China 被引量:1
12
作者 Fan Zhisong, Gao Guoping, Yin Xunqiang, Fan Yu, Wu Wei Marine Environment College,Ocean University of China,Qingdao 266003, China 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2003年第2期171-178,共8页
The measurements by using ADCP (500 KH) and CTD were made during August 2000in the south (37?5'N, 120?5'E) of the Bohai Sea, where the water depth was about 16.5 m. The data of horizontal velocity with samplin... The measurements by using ADCP (500 KH) and CTD were made during August 2000in the south (37?5'N, 120?5'E) of the Bohai Sea, where the water depth was about 16.5 m. The data of horizontal velocity with sampling interval of 2 min in 7 layers were obtained. The power spectrum analysis of these data indicates that there are very energetic infragravity waves with a period of about 6 min. The coherence spectrum analysis and the analysis of temporal variation of shear show that these infragravity waves are mainly the free wave model (properties of edge waves), in the meantime they possess some characteristics of internal waves, which are likely due to the distinctive marine environment in this area. It is speculated on that the instability processes (chiefly shear instability) of sheared stratified tidal flow owing to the effect of sea-floor slope in the coastal area might be the main mechanism generating these infragravity waves. 展开更多
关键词 Infragravity waves edge waves internal waves vertical shear of horizontal velocity internal mixing
下载PDF
Quantifying the Contribution of Track Changes to Interannual Variations of North Atlantic Intense Hurricanes 被引量:1
13
作者 Jun LU Liguang WU Shunwu ZHOU 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2022年第2期260-271,共12页
Previous studies have linked interannual variability of tropical cyclone(TC)intensity in the North Atlantic basin(NA)to Sahelian rainfall,vertical shear of the environmental flow,and relative sea surface temperature(S... Previous studies have linked interannual variability of tropical cyclone(TC)intensity in the North Atlantic basin(NA)to Sahelian rainfall,vertical shear of the environmental flow,and relative sea surface temperature(SST).In this study,the contribution of TC track changes to the interannual variations of intense hurricane activity in the North Atlantic basin is evaluated through numerical experiments.It is found that that observed interannual variations of the frequency of intense hurricanes during the period 1958–2017 are dynamically consistent with changes in the large-scale ocean/atmosphere environment.Track changes can account for~50%of the interannual variability of intense hurricanes,while no significant difference is found for individual environmental parameters between active and inactive years.The only significant difference between active and inactive years is in the duration of TC intensification in the region east of 60°W.The duration increase is not due to the slow-down of TC translation.In active years,a southeastward shift of the formation location in the region east of 60°W causes TCs to take a westward prevailing track,which allows TCs to have a longer opportunity for intensification.On the other hand,most TCs in inactive years take a recurving track,leading to a shorter duration of intensification.This study suggests that the influence of track changes should be considered to understand the basin-wide intensity changes in the North Atlantic basin on the interannual time scale. 展开更多
关键词 interannual variations intense hurricanes track changes vertical shear
下载PDF
A Statistical Analysis on the Effect of Vertical Wind Shear on Tropical Cyclone Development 被引量:16
14
作者 赵滨 端义宏 +1 位作者 余晖 杜秉玉 《Acta meteorologica Sinica》 SCIE 2006年第3期383-388,共6页
Using tropical cyclone (TC) best track and intensity of the western North Pacific data from the Joint Typhoon Warning Center (JTWC) of the United States and the NCEP/NCAR reanalysis data for the period of 1992-200... Using tropical cyclone (TC) best track and intensity of the western North Pacific data from the Joint Typhoon Warning Center (JTWC) of the United States and the NCEP/NCAR reanalysis data for the period of 1992-2002, the effects of vertical wind shear on TC intensity are examined. The samples were limited to the westward or northwestward moving TCs between 5°N and 20°N in order to minimize thermodynamic effects. It is found that the effect of vertical wind shear between 200 and 500 hPa on TC intensity change is larger than that of the shear between 500 and 850 hPa, while similar to that of the shear between 200 and 850 hPa. Vertical wind shear may have a threshold value, which tends to decrease as TC intensifies. As the intensifying rate of TC weakens, the average shear increases. The large shear has the obvious trend of inhibiting TC development. The average shear of TC which can develop into typhoon (tropical depression or tropical storm) is below 7 m s^-1 (above 8 m s^-1). 展开更多
关键词 vertical wind shear tropical cyclone (TC) statistical analysis
原文传递
Re-examination of Tropical Cyclone Formation in Monsoon Troughs over the Western North Pacific 被引量:5
15
作者 ZONG Huijun WU Liguang 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2015年第7期924-934,共11页
The monsoon trough (MT) is one of the large-scale patterns favorable for tropical cyclone (TC) formation over the western North Pacific (WNP). This study re-examines TC formation by treating the MT as a large-sc... The monsoon trough (MT) is one of the large-scale patterns favorable for tropical cyclone (TC) formation over the western North Pacific (WNP). This study re-examines TC formation by treating the MT as a large-scale background for TC activity during May-October. Over an 11-year (2000-10) period, 8.3 TC formation events on average per year are identified to occur within MTs, accounting for 43.1% of the total TC formation events in the WNP basin. This percentage is much lower than those reported in previous studies. Further analysis indicates that TC formation events in monsoon gyres were included at least in some previous studies. The MT includes a monsoon confluence zone where westerlies meet easterlies and a monsoon shear line where the trade easterlies lie north of the monsoon westerlies. In this study, the large-scale flow pattern associated with TC formation in the MT is composited based on the reference point in the confluence zone where both the zonal and meridional wind components are zero with positive vorticity. While previous studies have found that many TCs form in the confluence zone, the composite analysis indicates that nearly all of the TCs formed in the shear region, since the shear region is associated with stronger low-level relative vorticity than the confluence zone. The prevailing easterly vertical shear of zonal wind and barotropic instability may also be conducive to TC formation in the shear region, through the development of synoptic-scale tropical disturbances in the MT that are necessary for TC formation. 展开更多
关键词 monsoon trough tropical cyclone formation summer monsoon vertical wind shear
下载PDF
Lightning Activity and Its Relationship with Typhoon Intensity and Vertical Wind Shear for Super Typhoon Haiyan (1330) 被引量:5
16
作者 王芳 郄秀书 +2 位作者 刘冬霞 史海锋 Abhay Srivastava 《Journal of Meteorological Research》 SCIE CSCD 2016年第1期117-127,共11页
Super Typhoon Halyan (1330), which occurred in 2013, is the most powerful typhoon during landfall in the meteorological record. In this study, the temporal and spatial distributions of lightning activity of Haiyan w... Super Typhoon Halyan (1330), which occurred in 2013, is the most powerful typhoon during landfall in the meteorological record. In this study, the temporal and spatial distributions of lightning activity of Haiyan were analyzed by using the lightning data from the World Wide Lightning Location Network, typhoon intensity and position data from the China Meteorological Administration, and horizontal wind data from the ECMWF. Three distinct regions were identified in the spatial distribution of daily average lightning density, with the maxima in the inner core and the minima in the inner rainband. The lightning density in the intensifying stage of Haiyan was greater than that in its weakening stage. During the time when the typhoon intensity measured with maximum sustained wind speed was between 32.7 and 41.4 m s-1, the storm had the largest lightning density in the inner core, compared with other intensity stages. In contrast to earlier typhoon studies, the eyewall lightning burst out three times. The first two eyewall lightning outbreaks occurred during the period of rapid intensification and before the maximum intensity of the storm, suggesting that the eyewall lightning activity could be used to identify the change in tropical cyclone intensity. The flashes frequently occurred in the inner core, and in the outer rainbands with the black body temperature below 220 K. Combined with the ECMWF wind data, the influences of vertical wind shear (VWS) on the azimuthal distribution of flashes were also analyzed, showing that strong VWS produced downshear left asymmetry of lightning activity in the inner core and downshear right asymmetry in the ralnbands. 展开更多
关键词 Super Typhoon Haiyan typhoon intensity eyewall lightning outbreak vertical wind shear
原文传递
Insight into the Role of Lower-Layer Vertical Wind Shear in Tropical Cyclone Intensification over the Western North Pacific 被引量:5
17
作者 舒守娟 王元 白莉娜 《Acta meteorologica Sinica》 SCIE 2013年第3期356-363,共8页
Vertical wind shear fundamentally influences changes in tropical cyclone (TC) intensity. The effects of vertical wind shear on tropical cyclogenesis and evolution in the western North Pacific basin are not .well und... Vertical wind shear fundamentally influences changes in tropical cyclone (TC) intensity. The effects of vertical wind shear on tropical cyclogenesis and evolution in the western North Pacific basin are not .well understood. We present a new statistical study of all named TCs in this region during the period 2000- 2006 using a second-generation partial least squares (PLS) regression technique. The results show that the lower-layer (between 850 hPa and 10 m above the sea surface) wind shear is more important than the commonly analyzed deep-layer shear (between 200 and 850 hPa) for changes in TC intensity during the TC intensification period. This relationship is particularly strong for westerly low-level shear. Downdrafts induced by the lower-layer shear bring low θe air into the boundary layer from above, significantly reducing values of θe in the TC inflow layer and weakening the TC. Large values of deep-layer shear over the ocean to the east of the Philippine Islands inhibit TC formation, while large values of lower-layer shear over the central and western North Pacific inhibit TC intensification. The critical value of deep-layer shear for TC formation is approximately 10 m s-1, and the critical value of lower-layer shear for TC intensification is approximately ±1.5 m s-1. 展开更多
关键词 vertical wind shear tropical cyclone intensification western North Pacific
原文传递
Analysis of an Ensemble of High-Resolution WRF Simulations for the Rapid Intensification of Super Typhoon Rammasun(2014) 被引量:2
18
作者 Xun LI Noel EDAVIDSON +3 位作者 Yihong DUAN Kevin JTORY Zhian SUN Qinbo CAI 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2020年第2期187-210,共24页
Diagnostics are presented from an ensemble of high-resolution forecasts that differed markedly in their predictions of the rapid intensification(RI)of Typhoon Rammasun.We show that the basic difference stems from subt... Diagnostics are presented from an ensemble of high-resolution forecasts that differed markedly in their predictions of the rapid intensification(RI)of Typhoon Rammasun.We show that the basic difference stems from subtle differences in initializations of(a)500-850-h Pa environmental winds,and(b)midlevel moisture and ventilation.We then describe how these differences impact on the evolving convective organization,storm structure,and the timing of RI.As expected,ascent,diabatic heating and the secondary circulation near the inner-core are much stronger in the member that best forecasts the RI.The evolution of vortex cloudiness from this member is similar to the actual imagery,with the development of an inner cloud band wrapping inwards to form the eyewall.We present evidence that this structure,and hence the enhanced diabatic heating,is related to the tilt and associated dynamics of the developing inner-core in shear.For the most accurate ensemble member:(a)inhibition of ascent and a reduction in convection over the up-shear sector allow moistening of the boundary-layer air,which is transported to the down-shear sector to feed a developing convective asymmetry;(b)with minimal ventilation,undiluted clouds and moisture from the down-shear left quadrant are then wrapped inwards to the up-shear left quadrant to form the eyewall cloud;and(c)this process seems related to a critical down-shear tilt of the vortex from midlevels,and the vertical phase-locking of the circulation over up-shear quadrants.For the member that forecasts a much-delayed RI,these processes are inhibited by stronger vertical wind shear,initially resulting in poor vertical coherence of the circulation,lesser moisture and larger ventilation.Our analysis suggests that ensemble prediction is needed to account for the sensitivity of forecasts to a relatively narrow range of environmental wind shear,moisture and vortex inner-structure. 展开更多
关键词 TYPHOONS rapid intensification ensemble simulation spin-up processes ventilation vertical wind shear
下载PDF
Assessment of the Impacts of Tropical Cyclones Idai to the Western Coastal Area and Hinterlands of the South Western Indian Ocean 被引量:1
19
作者 Kombo Hamad Kai Sarah E. Osima +2 位作者 Mtongori Habiba Ismail Pacal Waniha Hamad Asya Omar 《Atmospheric and Climate Sciences》 2021年第4期812-840,共29页
Tropical Cyclones (TCs) are among the atmospheric events which may trigger/enhance the occurrence of disasters to the society in most world basins including <span style="font-family:Verdana;">the </... Tropical Cyclones (TCs) are among the atmospheric events which may trigger/enhance the occurrence of disasters to the society in most world basins including <span style="font-family:Verdana;">the </span><span style="font-family:;" "=""><span style="font-family:Verdana;">Southwestern Indian Ocean (SWIO). This study analyzed the dynamics and the impacts of the Tropical Cyclone (TC) Idai (4</span><sup><span style="font-family:Verdana;">th</span></sup><span style="font-family:Verdana;">-21</span><sup><span style="font-family:Verdana;">st</span></sup><span style="font-family:Verdana;"> March, 2019) which devastated most of the SWIO countries. The study used the Reanalysis 1 products of daily zonal (u) and meridional (v) winds, Sea Surface Temperatures (SSTs), amount of Precipitable Water (PRW), </span></span><span style="font-family:Verdana;">and relative humidity</span><span style="font-family:Verdana;"> (Rh). The dynamics and movements of Idai w</span><span style="font-family:Verdana;">ere</span><span style="font-family:Verdana;"> analyzed using the wind circulation at 850, 700, 500 and 200 mb, where the TC dynamic variables like vertical wind shear, vorticity, and the mean zonal wind were calculated using u and v components. Using the open Grid Analysis and Display System (GrADS) software the data was processed into three</span><span style="font-family:Verdana;">-</span><span style="font-family:Verdana;">time epochs of pre, during and post;and then analyzed to feature the state of the atmosphere before (pre), during and post TC Idai using all datasets. </span><span style="font-family:Verdana;">The </span><span style="font-family:;" "=""><span style="font-family:Verdana;">amount of precipitable water was used to map the rainfall on pre, during, and post Idai as well as during its landfall. The results revealed that dynamics of TC Idai was intensifying the weather (over Mozambique) and clearing the weather equatorward or southward of 12<span style="white-space:nowrap;">&#176;</span>S, with low vertical wind shear over the landfall areas (</span><span style="white-space:nowrap;font-family:Verdana;">-</span><span style="font-family:Verdana;"></span><span style="font-family:Verdana;">3 to 3 m/s) and higher shear values (10 - 40 m/s) northward and southward of the Mozambican channel. Higher moisture content (80 - 90%) and higher PRW (40 - 60 mm/day) mapped during Idai over the lowland areas of Mozambique propagating westward. Higher low</span></span><span style="font-family:Verdana;">-</span><span style="font-family:Verdana;">level vorticity values were also mapped over the landfall areas. More results revealed that countries laying equatorward of 12<span style="white-space:nowrap;">&#176;</span>S</span><span style="font-family:Verdana;">,</span><span style="font-family:Verdana;"> e.g.</span><span style="font-family:Verdana;">,</span><span style="font-family:Verdana;"> the northern coastal areas of Kenya (Turkana and Baringo) and Tanzania, Idai disrupted the 2019 March to May (MAM) seasonal rainfall by inducing long dry spell which accelerated the famine over the northeastern Kenya (Turkana). Moreover, results revealed that the land falling of Idai triggered intensive flooding which affected </span><span style="font-family:Verdana;">a </span><span style="font-family:Verdana;">wide spectrum of socio</span><span style="font-family:Verdana;">-</span><span style="font-family:Verdana;">economic livelihoods including significant loss of lives, injuries, loss of material wealth, infrastructure;indeed, people were forced to le</span><span style="font-family:Verdana;">ave</span><span style="font-family:Verdana;"> their houses for quite </span><span style="font-family:Verdana;">a </span><span style="font-family:Verdana;">longtime;water</span><span style="font-family:Verdana;">-</span><span style="font-family:Verdana;">born</span><span style="font-family:Verdana;">e</span><span style="font-family:Verdana;"> diseases like malaria, cholera among others were experienced. Furthermore, results and reports revealed that </span><span style="font-family:Verdana;">a </span><span style="font-family:Verdana;">large amount of funds were raised to combat the impacts of Idai. For instance, USAID/OFDA used about $14,146,651 for human aid and treatment of flood</span><span style="font-family:Verdana;">-</span><span style="font-family:Verdana;">prone diseases like Cholera in Mozambique ($13,296,651), Zimbabwe ($100,000), and Malawi ($280,000), respectively. Also a death toll of about 602 in Mozambique and 344 in Zimbabwe, and more than 2500 cases of injured people were reported</span><span style="font-family:Verdana;">.</span><span style="font-family:Verdana;"> Conclusively the study has shown that TCs including Idai and other are among the deadliest natural phenomenon which great affects the human and his environments, thus extensive studies on TCs frequency, strength, tracks as well </span><span style="font-family:Verdana;">as </span><span style="font-family:Verdana;">their coast benefit analysis should be conducted to reduce the societal impacts of these TCs.</span> 展开更多
关键词 Tropical Cyclones Zonal and Meridional Winds Precipitable Water vertical Wind shear Low-Level Vorticity Water-Borne Diseases Deaths and Injuries
下载PDF
A Comparative Study of the Atmospheric Layers below First Lifting Condensation Level for Instantaneous Pre-Monsoon Thunderstorm Ocurence at Agartala(23°30′N,91°15′E) and Ranchi(23°14′N,85°14′E) of India
20
作者 Sarbari Ghosh and Utpal Kumar De Atmospheric Science Research, Department of Physics, Jadavpur University, Calcutta 700 032, India Received April 8, 1996 revised July 8, 1996 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 1997年第1期94-98,共5页
An attempt has been made to investigate the role of vertical wind shear, convective instability and the thermodynamic parameter ( θ es -θ e ) below the first lifting condensation level (FLCL) in the occurrenc... An attempt has been made to investigate the role of vertical wind shear, convective instability and the thermodynamic parameter ( θ es -θ e ) below the first lifting condensation level (FLCL) in the occurrence of instantaneous premonsoon thunderstorm over Agartala (AGT) and Ranchi (RNC) at 12 GMT. Radiosonde data of 1988 have been utilized here. The study has however been confined to 1000 hPa-500 hPa range at most. Here the convectively unstable layers with positive vertical wind shear upto 500 hPa have been termed as ‘Favourable Layers’ (FL) and the level at which an initially stable layer turns out to be convectively unstable for the first time has been termed as ‘Transition Level’ (TL). It is observed that the changes in vertical wind shear are positive at TL at the time of occurrence of thunderstorm (TS) and the corresponding change is negative on fair-weather situation. Moreover, the 90% confidence interval for ( θ es -θ e ) reveals that for AGT the upper layer thermodynamic characteristic is important at the time of occurrence of TS whereas for RNC, the value of ( θ es -θ e ) at the surface is much more effective. 展开更多
关键词 Convective instability vertical wind shear Saturated equivalent potential temperature Equivalent potential temperature Confidence interval
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部