An exact three-dimensional analysis based on the linear potential theory and the elaborated method of eigenfunction expansion in elliptic coordinates are presented to study the free coupled elasto-hyrodynamic characte...An exact three-dimensional analysis based on the linear potential theory and the elaborated method of eigenfunction expansion in elliptic coordinates are presented to study the free coupled elasto-hyrodynamic characteristics of an upright non-deformable cylindrical container of elliptical planform with a flexible bottom plate, filled to an arbitrary depth with an inviscid incompressible liquid. Extensive numerical data are presented in an orderly fashion for the first few symmetric/anti-symmetric coupled hydroelastic natural frequencies as a function of fluid depth parameter for two plate aspect ratios. Also, selected hydrodynamic and structural deformation modes shapes are presented in graphical form. The effects of liquid level, bottom plate elasticity, and cross sectional aspect ratio on the sloshing frequencies and hydrodynamic pressure modes are examined. The validity of the results is examined through computations using a commercial finite element package as well as by comparison with the data available in literature.展开更多
文摘An exact three-dimensional analysis based on the linear potential theory and the elaborated method of eigenfunction expansion in elliptic coordinates are presented to study the free coupled elasto-hyrodynamic characteristics of an upright non-deformable cylindrical container of elliptical planform with a flexible bottom plate, filled to an arbitrary depth with an inviscid incompressible liquid. Extensive numerical data are presented in an orderly fashion for the first few symmetric/anti-symmetric coupled hydroelastic natural frequencies as a function of fluid depth parameter for two plate aspect ratios. Also, selected hydrodynamic and structural deformation modes shapes are presented in graphical form. The effects of liquid level, bottom plate elasticity, and cross sectional aspect ratio on the sloshing frequencies and hydrodynamic pressure modes are examined. The validity of the results is examined through computations using a commercial finite element package as well as by comparison with the data available in literature.