Ultrahigh resolution synthetic aperture radar(SAR)imaging for ship targets is significant in SAR imaging,but it suffers from high frequency vibration of the platform,which will induce defocus into SAR imaging results....Ultrahigh resolution synthetic aperture radar(SAR)imaging for ship targets is significant in SAR imaging,but it suffers from high frequency vibration of the platform,which will induce defocus into SAR imaging results.In this paper,a novel compensation method based on the sinusoidal frequency modulation Fourier-Bessel transform(SFMFBT)is proposed,it can estimate the vibration errors,and the phase shift ambiguity can be avoided via extracting the time frequency ridge consequently.By constructing the corresponding compensation function and combined with the inverse SAR(ISAR)technique,well-focused imaging results can be obtained.The simulation imaging results of ship targets demonstrate the validity of the proposed approach.展开更多
As an important equipment for sea state remote sensing, high frequency surface wave radar (HFSWR) has received more and more attention. The conventional method for wave height inversion is based on the ratio of the ...As an important equipment for sea state remote sensing, high frequency surface wave radar (HFSWR) has received more and more attention. The conventional method for wave height inversion is based on the ratio of the integration of the second-order spectral continuum to that of the first-order region, where the strong external noise and the incorrect delineation of the first- and second-order Doppler spectral regions due to spectral aliasing are two major sources of errors in the wave height. To account for these factors, two more indices are introduced to the wave height estimation, i.e., the ratio of the maximum power of the second-or- der continuum to that of the Bragg spectral region (RSCB) and the ratio of the power of the second harmonic peak to that of the Bragg peak (RSHB). Both indices also have a strong correlation with the underlying wave height. On the basis of all these indices an empirical model is proposed to estimate the wave height. This method has been used in a three-months long experiment of the ocean state measuring and analyzing ra- dar, type S (OSMAR-S), which is a portable HFSWR with compact cross-loop/monopole receive antennas developed by Wuhan University since 2006. During the experiment in the Taiwan Strait, the significant wave height varied from 0 to 5 m. The significant wave heights estimated by the OSMAR-S correlate well with the data provided by the Oceanweather Inc. for comparison, with a correlation coefficient of 0.74 and a root mean square error (RMSE) of 0.77 m. The proposed method has made an effective improvement to the wave height estimation and thus a further step toward operational use of the OSMAR-S in the wave height extraction.展开更多
Based on the quasi-harmonic analysis of 11 d vector ocean currents obtained from two high frequency sur- face wave radars located at Zhujiajian Island and Shengshan Island, the spatial distribution characteristics of ...Based on the quasi-harmonic analysis of 11 d vector ocean currents obtained from two high frequency sur- face wave radars located at Zhujiajian Island and Shengshan Island, the spatial distribution characteristics of surface tidal currents in the open sea area to the east of the Zhoushan Islands of Zhejiang Province, China are studied. The following conclusions are drawn from the analysis: the tidal current pattern in the open sea area to the east of Zhoushan Islands is primarily regular semidiurnal, which is significantly affected by the shallow water constituents. The directions of the major axes of tidal current ellipses of M2 lie approx- imately in the NW-SE direction. With the increasing of distance away from the coast, the directions of the tidal current ellipses gradually shift toward the E-W direction. The tidal currents are mainly reversing cur- rents. The spatial distribution of probable maximum current velocities decreases gradually from northeast to southwest which is basically in accordance with the spatial distribution of measured maximum current velocities. The residual currents near the coast are larger than those far away from the coast. The directions of the residual currents are basically north by east, and the angle to the due north increases gradually with the increasing distance away from the coast. The topography shows a certain impact on the spatial distri- bution of shallow water constituents, the rotation of tidal currents, the probable maximum currents and the residual currents.展开更多
The popular methods to estimate wave height with high-frequency(HF) radar depend on the integration over the second-order spectral region and thus may come under from even not strong external interference. To improv...The popular methods to estimate wave height with high-frequency(HF) radar depend on the integration over the second-order spectral region and thus may come under from even not strong external interference. To improve the accuracy and increase the valid detection range of the wave height measurement, particularly by the smallaperture radar, it is turned to singular peaks which often exceed the power of other frequency components. The power of three kinds of singular peaks, i.e., those around ±1,±√2 and ±1√2 times the Bragg frequency, are retrieved from a one-month-long radar data set collected by an ocean state monitoring and analyzing radar,model S(OSMAR-S), and in situ buoy records are used to make some comparisons. The power response to a wave height is found to be described with a new model quite well, by which obvious improvement on the wave height estimation is achieved. With the buoy measurements as reference, a correlation coefficient is increased to 0.90 and a root mean square error(RMSE) is decreased to 0.35 m at the range of 7.5 km compared with the results by the second-order method. The further analysis of the fitting performance across range suggests that the peak has the best fit and maintains a good performance as far as 40 km. The correlation coefficient is 0.78 and the RMSE is 0.62 m at 40 km. These results show the effectiveness of the new empirical method, which opens a new way for the wave height estimation with the HF radar.展开更多
High-frequency surface wave radar(HFSWR) and automatic identification system(AIS) are the two most important sensors used for vessel tracking.The HFSWR can be applied to tracking all vessels in a detection area,wh...High-frequency surface wave radar(HFSWR) and automatic identification system(AIS) are the two most important sensors used for vessel tracking.The HFSWR can be applied to tracking all vessels in a detection area,while the AIS is usually used to verify the information of cooperative vessels.Because of interference from sea clutter,employing single-frequency HFSWR for vessel tracking may obscure vessels located in the blind zones of Bragg peaks.Analyzing changes in the detection frequencies constitutes an effective method for addressing this deficiency.A solution consisting of vessel fusion tracking is proposed using dual-frequency HFSWR data calibrated by the AIS.Since different systematic biases exist between HFSWR frequency measurements and AIS measurements,AIS information is used to estimate and correct the HFSWR systematic biases at each frequency.First,AIS point measurements for cooperative vessels are associated with the HFSWR measurements using a JVC assignment algorithm.From the association results of the cooperative vessels,the systematic biases in the dualfrequency HFSWR data are estimated and corrected.Then,based on the corrected dual-frequency HFSWR data,the vessels are tracked using a dual-frequency fusion joint probabilistic data association(JPDA)-unscented Kalman filter(UKF) algorithm.Experimental results using real-life detection data show that the proposed method is efficient at tracking vessels in real time and can improve the tracking capability and accuracy compared with tracking processes involving single-frequency data.展开更多
High frequency ground wave radar (HFGWR) has unique advantage in the survey of dynamical factors, such as sea surface current, sea wave, and sea surface wind in marine conditions in coastal sea area. Compared to mar...High frequency ground wave radar (HFGWR) has unique advantage in the survey of dynamical factors, such as sea surface current, sea wave, and sea surface wind in marine conditions in coastal sea area. Compared to marine satellite remote sensing, it involves lower cost, has higher measuring accuracy and spatial resolution and sampling frequency. High frequency ground wave radar is a new land based remote sensing instrument with superior vision and greater application potentials. This paper reviews the development history and application status of high frequency wave radar, introduces its remote-sensing principle and method to inverse offshore fluid, and wave and wind field. Based on the author's "863 Project", this paper recounts comparison and verification of radar remote-sensing value, the physical calibration of radar-measured data and methods to control the quality of radar-sensing data. The authors discuss the precision of radar-sensing data's inversing on offshore fluid field and application of the assimilated data on assimilation.展开更多
In this paper, on the basis of the working principles of high frequency ground wave radar for retrieval of ocean wave and sea wind elements were used to systematically study the data obtained from contrast validation ...In this paper, on the basis of the working principles of high frequency ground wave radar for retrieval of ocean wave and sea wind elements were used to systematically study the data obtained from contrast validation test in Zhoushan sea area of Zhejiang Province on Oct. 2000, to validate the accuracy of OSMAR2000 for wave and wind parameters, and to analyze the possible error caused when using OSMAR2000 to retrieve ocean parameters.展开更多
Most operating radar systems don′t have sufficient frequency bandwidth to produce high range resolution(HRR) profile of a target. But we can use stepped frequency waveform in a narrow band coherent radar to obtai...Most operating radar systems don′t have sufficient frequency bandwidth to produce high range resolution(HRR) profile of a target. But we can use stepped frequency waveform in a narrow band coherent radar to obtain the HRR profile of a target. For moving targets which are of great importance in practical radar usage, autofocusing,i.e. phase correction, is a necessary and critical step of the synthetic HRR processing. The purpose of autofocusing is to remove the radial motion effect of the target from radar echoes, and only reserve the stepped frequency effect which is the basis of synthetic HRR capability. We investigate two autofocusing approaches for synthetic HRR radars using stepped frequency waveform in this paper. The first is motion fitting method. This method depends on a certain parametric model, and is computationally expensive. Then we propose the iterative dominant scatterer method. It is robust, non parametric and simple in computation in comparison with the motion fitting method. Experimental results based on data acquired by using a metallised scale model B 52 in a microwave anechoic chamber reveal the validity and effectiveness of the method.展开更多
The principle and method of both radar target imaging and velocity measurement simultaneously based on step frequency waveforms is presented. Velocity compensation is necessary in order to obtain the good High resolut...The principle and method of both radar target imaging and velocity measurement simultaneously based on step frequency waveforms is presented. Velocity compensation is necessary in order to obtain the good High resolution range profile since this waveform is greatly sensitive to the Doppler shift. The velocity measurement performance of the four styles is analyzed with two pulse trains consisted of positive and negative step frequency waveforms. The velocity of targets can be estimated first coarsely by using the pulse trains with positive-positive step frequency combination, and then fine by positive-negative combination. Simulation results indicate that the method can accomplish the accurate estimation of the velocity with efficient computation and good anti-noise performance and obtain the good HRRP simultaneously.展开更多
A new fractal image compression algorithm based on high frequency energy (HFE) partitioning andmatched domain block searching is presented to code synthetic aperture radar (SAR) imagery. In the hybridcoding algorithm,...A new fractal image compression algorithm based on high frequency energy (HFE) partitioning andmatched domain block searching is presented to code synthetic aperture radar (SAR) imagery. In the hybridcoding algorithm, the original SAR image is decomposed to low frequency components and high frequencycomponents by wavelet transform (WT). Then the coder uses HFE of block to partition and searchthe matched domain block for each range block to code the low frequency components. For the high frequencycomponents, a modified embedded zero-tree wavelet coding algorithm is applied. Experiment resultsshow that the proposed coder obtains about 0. 3dB gain when compared to the traditional fractal coderbased on the quadtree partition. Moreover, the subjective visual quality of the reconstructed SAR imageof the proposed coder outperforms that of the traditional fractal coders in the same compression ratio(CR).展开更多
This paper proposes a novel flexible antenna design operating at very high frequency(VHF)band for on-body applications such as human body communication(HBC).The antenna consists of back-to-back E-shaped fractal and co...This paper proposes a novel flexible antenna design operating at very high frequency(VHF)band for on-body applications such as human body communication(HBC).The antenna consists of back-to-back E-shaped fractal and complimentary structures designed over a thin flex-ible substrate.The overall design working on the principle of fractal geometries and capacitive coupling is highly beneficial to achieve better antenna characteristics even at low frequencies around 35 MHz-45 MHz that are being used for HBC application.The proposed antenna obtained a large bandwidth of around 10.0 MHz in air and a bandwidth of around 8.0 MHz during on-body opera-tion.The antenna has been tested in three different scenarios viz.air,on-body single antenna and on-body communication using two antennas.The insertion loss is reduced to a minimum in all three scenarios,which is quite beneficial for better signal transmission.The size miniaturization with high flexibility in such low frequencies has also been achieved in the paper that makes the proposed design suitable for human body communication applications.展开更多
调频广播主要在甚高频(Very High Frequency,VHF)频段传输。VHF频段具有传播距离远、穿透力强、信号稳定等优势,但易受多种因素影响。基于此,首先介绍VHF频段的基本特点和调频广播信号的技术参数,其次介绍VHF频段调频广播信号传播的测...调频广播主要在甚高频(Very High Frequency,VHF)频段传输。VHF频段具有传播距离远、穿透力强、信号稳定等优势,但易受多种因素影响。基于此,首先介绍VHF频段的基本特点和调频广播信号的技术参数,其次介绍VHF频段调频广播信号传播的测量过程,最后从天线的设计和布置、调制、编码技术的应用等方面,提出改善VHF频段调频广播覆盖效果的策略。展开更多
This paper presents a new method of High Resolution Range (HRR) profile formation based on Linear Frequency Modulation (LFM) signal fusion of multiple radars with multiple frequency bands. The principle of the multipl...This paper presents a new method of High Resolution Range (HRR) profile formation based on Linear Frequency Modulation (LFM) signal fusion of multiple radars with multiple frequency bands. The principle of the multiple radars signal fusion improving the range resolution is analyzed. With the analysis of return signals received by two radars,it is derived that the phase difference between the echoes varies almost linearly with respect to the frequency if the distance between two radars is neg-ligible compared with the radar observation distance. To compensate the phase difference,an en-tropy-minimization principle based compensation algorithm is proposed. During the fusion process,the B-splines interpolation method is applied to resample the signals for Fourier transform imaging. The theoretical analysis and simulations results show the proposed method can effectively increase signal bandwidth and provide a high resolution range profile.展开更多
基金supported by the National Natural Science Foundation of China(61871146)the Fundamental Research Funds for the Central Universities(FRFCU5710093720)。
文摘Ultrahigh resolution synthetic aperture radar(SAR)imaging for ship targets is significant in SAR imaging,but it suffers from high frequency vibration of the platform,which will induce defocus into SAR imaging results.In this paper,a novel compensation method based on the sinusoidal frequency modulation Fourier-Bessel transform(SFMFBT)is proposed,it can estimate the vibration errors,and the phase shift ambiguity can be avoided via extracting the time frequency ridge consequently.By constructing the corresponding compensation function and combined with the inverse SAR(ISAR)technique,well-focused imaging results can be obtained.The simulation imaging results of ship targets demonstrate the validity of the proposed approach.
基金The National Natural Science Foundation of China under contract No.61371198the National Special Program for Key Scientific Instrument and Equipment Development of China under contract No.2013YQ160793the Natural Science Foundation of Jiangsu Province of China under contract No.BK2012199
文摘As an important equipment for sea state remote sensing, high frequency surface wave radar (HFSWR) has received more and more attention. The conventional method for wave height inversion is based on the ratio of the integration of the second-order spectral continuum to that of the first-order region, where the strong external noise and the incorrect delineation of the first- and second-order Doppler spectral regions due to spectral aliasing are two major sources of errors in the wave height. To account for these factors, two more indices are introduced to the wave height estimation, i.e., the ratio of the maximum power of the second-or- der continuum to that of the Bragg spectral region (RSCB) and the ratio of the power of the second harmonic peak to that of the Bragg peak (RSHB). Both indices also have a strong correlation with the underlying wave height. On the basis of all these indices an empirical model is proposed to estimate the wave height. This method has been used in a three-months long experiment of the ocean state measuring and analyzing ra- dar, type S (OSMAR-S), which is a portable HFSWR with compact cross-loop/monopole receive antennas developed by Wuhan University since 2006. During the experiment in the Taiwan Strait, the significant wave height varied from 0 to 5 m. The significant wave heights estimated by the OSMAR-S correlate well with the data provided by the Oceanweather Inc. for comparison, with a correlation coefficient of 0.74 and a root mean square error (RMSE) of 0.77 m. The proposed method has made an effective improvement to the wave height estimation and thus a further step toward operational use of the OSMAR-S in the wave height extraction.
基金The National High Technology Research and Development Program of China(863 Program)under contract No.2012AA091701the Fundamental Research Fund for the Central Universities of China under contract No.2012212020211
文摘Based on the quasi-harmonic analysis of 11 d vector ocean currents obtained from two high frequency sur- face wave radars located at Zhujiajian Island and Shengshan Island, the spatial distribution characteristics of surface tidal currents in the open sea area to the east of the Zhoushan Islands of Zhejiang Province, China are studied. The following conclusions are drawn from the analysis: the tidal current pattern in the open sea area to the east of Zhoushan Islands is primarily regular semidiurnal, which is significantly affected by the shallow water constituents. The directions of the major axes of tidal current ellipses of M2 lie approx- imately in the NW-SE direction. With the increasing of distance away from the coast, the directions of the tidal current ellipses gradually shift toward the E-W direction. The tidal currents are mainly reversing cur- rents. The spatial distribution of probable maximum current velocities decreases gradually from northeast to southwest which is basically in accordance with the spatial distribution of measured maximum current velocities. The residual currents near the coast are larger than those far away from the coast. The directions of the residual currents are basically north by east, and the angle to the due north increases gradually with the increasing distance away from the coast. The topography shows a certain impact on the spatial distri- bution of shallow water constituents, the rotation of tidal currents, the probable maximum currents and the residual currents.
基金The National Natural Science Foundation of China under contract No.61371198the National Special Program for Key Scientific Instrument and Equipment Development of China under contract No.2013YQ160793
文摘The popular methods to estimate wave height with high-frequency(HF) radar depend on the integration over the second-order spectral region and thus may come under from even not strong external interference. To improve the accuracy and increase the valid detection range of the wave height measurement, particularly by the smallaperture radar, it is turned to singular peaks which often exceed the power of other frequency components. The power of three kinds of singular peaks, i.e., those around ±1,±√2 and ±1√2 times the Bragg frequency, are retrieved from a one-month-long radar data set collected by an ocean state monitoring and analyzing radar,model S(OSMAR-S), and in situ buoy records are used to make some comparisons. The power response to a wave height is found to be described with a new model quite well, by which obvious improvement on the wave height estimation is achieved. With the buoy measurements as reference, a correlation coefficient is increased to 0.90 and a root mean square error(RMSE) is decreased to 0.35 m at the range of 7.5 km compared with the results by the second-order method. The further analysis of the fitting performance across range suggests that the peak has the best fit and maintains a good performance as far as 40 km. The correlation coefficient is 0.78 and the RMSE is 0.62 m at 40 km. These results show the effectiveness of the new empirical method, which opens a new way for the wave height estimation with the HF radar.
基金The National Natural Science Foundation of China under contract No.61362002the Marine Scientific Research Special Funds for Public Welfare of China under contract No.201505002
文摘High-frequency surface wave radar(HFSWR) and automatic identification system(AIS) are the two most important sensors used for vessel tracking.The HFSWR can be applied to tracking all vessels in a detection area,while the AIS is usually used to verify the information of cooperative vessels.Because of interference from sea clutter,employing single-frequency HFSWR for vessel tracking may obscure vessels located in the blind zones of Bragg peaks.Analyzing changes in the detection frequencies constitutes an effective method for addressing this deficiency.A solution consisting of vessel fusion tracking is proposed using dual-frequency HFSWR data calibrated by the AIS.Since different systematic biases exist between HFSWR frequency measurements and AIS measurements,AIS information is used to estimate and correct the HFSWR systematic biases at each frequency.First,AIS point measurements for cooperative vessels are associated with the HFSWR measurements using a JVC assignment algorithm.From the association results of the cooperative vessels,the systematic biases in the dualfrequency HFSWR data are estimated and corrected.Then,based on the corrected dual-frequency HFSWR data,the vessels are tracked using a dual-frequency fusion joint probabilistic data association(JPDA)-unscented Kalman filter(UKF) algorithm.Experimental results using real-life detection data show that the proposed method is efficient at tracking vessels in real time and can improve the tracking capability and accuracy compared with tracking processes involving single-frequency data.
基金Supported by the High-Tech Research and Development Program of China (863 Program. No. 2002AA639150 2001AA633070)
文摘High frequency ground wave radar (HFGWR) has unique advantage in the survey of dynamical factors, such as sea surface current, sea wave, and sea surface wind in marine conditions in coastal sea area. Compared to marine satellite remote sensing, it involves lower cost, has higher measuring accuracy and spatial resolution and sampling frequency. High frequency ground wave radar is a new land based remote sensing instrument with superior vision and greater application potentials. This paper reviews the development history and application status of high frequency wave radar, introduces its remote-sensing principle and method to inverse offshore fluid, and wave and wind field. Based on the author's "863 Project", this paper recounts comparison and verification of radar remote-sensing value, the physical calibration of radar-measured data and methods to control the quality of radar-sensing data. The authors discuss the precision of radar-sensing data's inversing on offshore fluid field and application of the assimilated data on assimilation.
基金Supported by Natural Science Fund Project of Guangdong Province, Grant No.04001308, and National 863 Project, Grant No.2002AA639150, and No.2002AA639480
文摘In this paper, on the basis of the working principles of high frequency ground wave radar for retrieval of ocean wave and sea wind elements were used to systematically study the data obtained from contrast validation test in Zhoushan sea area of Zhejiang Province on Oct. 2000, to validate the accuracy of OSMAR2000 for wave and wind parameters, and to analyze the possible error caused when using OSMAR2000 to retrieve ocean parameters.
文摘Most operating radar systems don′t have sufficient frequency bandwidth to produce high range resolution(HRR) profile of a target. But we can use stepped frequency waveform in a narrow band coherent radar to obtain the HRR profile of a target. For moving targets which are of great importance in practical radar usage, autofocusing,i.e. phase correction, is a necessary and critical step of the synthetic HRR processing. The purpose of autofocusing is to remove the radial motion effect of the target from radar echoes, and only reserve the stepped frequency effect which is the basis of synthetic HRR capability. We investigate two autofocusing approaches for synthetic HRR radars using stepped frequency waveform in this paper. The first is motion fitting method. This method depends on a certain parametric model, and is computationally expensive. Then we propose the iterative dominant scatterer method. It is robust, non parametric and simple in computation in comparison with the motion fitting method. Experimental results based on data acquired by using a metallised scale model B 52 in a microwave anechoic chamber reveal the validity and effectiveness of the method.
文摘The principle and method of both radar target imaging and velocity measurement simultaneously based on step frequency waveforms is presented. Velocity compensation is necessary in order to obtain the good High resolution range profile since this waveform is greatly sensitive to the Doppler shift. The velocity measurement performance of the four styles is analyzed with two pulse trains consisted of positive and negative step frequency waveforms. The velocity of targets can be estimated first coarsely by using the pulse trains with positive-positive step frequency combination, and then fine by positive-negative combination. Simulation results indicate that the method can accomplish the accurate estimation of the velocity with efficient computation and good anti-noise performance and obtain the good HRRP simultaneously.
基金Supported by the National Natural Science Foundation of China (No. 90304003)the President Fund of GUCAS (No. O85101HM03).
文摘A new fractal image compression algorithm based on high frequency energy (HFE) partitioning andmatched domain block searching is presented to code synthetic aperture radar (SAR) imagery. In the hybridcoding algorithm, the original SAR image is decomposed to low frequency components and high frequencycomponents by wavelet transform (WT). Then the coder uses HFE of block to partition and searchthe matched domain block for each range block to code the low frequency components. For the high frequencycomponents, a modified embedded zero-tree wavelet coding algorithm is applied. Experiment resultsshow that the proposed coder obtains about 0. 3dB gain when compared to the traditional fractal coderbased on the quadtree partition. Moreover, the subjective visual quality of the reconstructed SAR imageof the proposed coder outperforms that of the traditional fractal coders in the same compression ratio(CR).
基金National Key Research and Development Pro-gram of China(No.2018YFC2001002)Shenzhen Basic Re-search Project(Nos.JCYJ20180507182231907,PIFI 2020FYB0001)CAS Key Lab of Health Informatics.
文摘This paper proposes a novel flexible antenna design operating at very high frequency(VHF)band for on-body applications such as human body communication(HBC).The antenna consists of back-to-back E-shaped fractal and complimentary structures designed over a thin flex-ible substrate.The overall design working on the principle of fractal geometries and capacitive coupling is highly beneficial to achieve better antenna characteristics even at low frequencies around 35 MHz-45 MHz that are being used for HBC application.The proposed antenna obtained a large bandwidth of around 10.0 MHz in air and a bandwidth of around 8.0 MHz during on-body opera-tion.The antenna has been tested in three different scenarios viz.air,on-body single antenna and on-body communication using two antennas.The insertion loss is reduced to a minimum in all three scenarios,which is quite beneficial for better signal transmission.The size miniaturization with high flexibility in such low frequencies has also been achieved in the paper that makes the proposed design suitable for human body communication applications.
文摘调频广播主要在甚高频(Very High Frequency,VHF)频段传输。VHF频段具有传播距离远、穿透力强、信号稳定等优势,但易受多种因素影响。基于此,首先介绍VHF频段的基本特点和调频广播信号的技术参数,其次介绍VHF频段调频广播信号传播的测量过程,最后从天线的设计和布置、调制、编码技术的应用等方面,提出改善VHF频段调频广播覆盖效果的策略。
文摘This paper presents a new method of High Resolution Range (HRR) profile formation based on Linear Frequency Modulation (LFM) signal fusion of multiple radars with multiple frequency bands. The principle of the multiple radars signal fusion improving the range resolution is analyzed. With the analysis of return signals received by two radars,it is derived that the phase difference between the echoes varies almost linearly with respect to the frequency if the distance between two radars is neg-ligible compared with the radar observation distance. To compensate the phase difference,an en-tropy-minimization principle based compensation algorithm is proposed. During the fusion process,the B-splines interpolation method is applied to resample the signals for Fourier transform imaging. The theoretical analysis and simulations results show the proposed method can effectively increase signal bandwidth and provide a high resolution range profile.