Short-duration heavy rainfall(SHR),as delineated by the National Meteorological Center of the China Me-teorological Administration,is characterized by hourly rainfall amounts no less than 20.0 mm.SHR is one of the mos...Short-duration heavy rainfall(SHR),as delineated by the National Meteorological Center of the China Me-teorological Administration,is characterized by hourly rainfall amounts no less than 20.0 mm.SHR is one of the most common convective weather phenomena that can cause severe damage.Short-range forecasting of SHR is an important part of operational severe weather prediction.In the present study,an improved objective SHR forecasting scheme was developed by adopting the ingredients-based methodology and using the fuzzy logic approach.The 1.0°×1.0°National Centers for Environmental Prediction(NCEP)final analysis data and the ordinary rainfall(0.1-19.9 mm h-1)and SHR observational data from 411 stations were used in the improved scheme.The best lifted index,the total precipitable water,the 925 hPa specific humidity(Q 925),and the 925 hPa divergence(DIV 925)were selected as predictors based on objective analysis.Continuously distributed membership functions of predictors were obtained based on relative frequency analysis.The weights of predictors were also objectively determined.Experiments with a typhoon SHR case and a spring SHR case show that the main possible areas could be captured by the improved scheme.Verification of SHR forecasts within 96 hours with NCEP global forecasts 1.0°×1.0°data initiated at 08:00 Beijing Time during the warm seasons in 2015 show the results were improved from both deterministic and probabilistic perspectives.This study provides an objectively feasible choice for short-range guidance forecasts of SHR.The scheme can be applied to other convective phenomena.展开更多
Due to various technical issues,existing numerical weather prediction(NWP)models often perform poorly at forecasting rainfall in the first several hours.To correct the bias of an NWP model and improve the accuracy of ...Due to various technical issues,existing numerical weather prediction(NWP)models often perform poorly at forecasting rainfall in the first several hours.To correct the bias of an NWP model and improve the accuracy of short-range precipitation forecasting,we propose a deep learning-based approach called UNet Mask,which combines NWP forecasts with the output of a convolutional neural network called UNet.The UNet Mask involves training the UNet on historical data from the NWP model and gridded rainfall observations for 6-hour precipitation forecasting.The overlap of the UNet output and the NWP forecasts at the same rainfall threshold yields a mask.The UNet Mask blends the UNet output and the NWP forecasts by taking the maximum between them and passing through the mask,which provides the corrected 6-hour rainfall forecasts.We evaluated UNet Mask on a test set and in real-time verification.The results showed that UNet Mask outperforms the NWP model in 6-hour precipitation prediction by reducing the FAR and improving CSI scores.Sensitivity tests also showed that different small rainfall thresholds applied to the UNet and the NWP model have different effects on UNet Mask's forecast performance.This study shows that UNet Mask is a promising approach for improving rainfall forecasting of NWP models.展开更多
The partial cycle(PC)strategy has been used in many rapid refresh cycle systems(RRC)for regional short-range weather forecasting.Since the strategy periodically reinitializes the regional model(RM)from the global mode...The partial cycle(PC)strategy has been used in many rapid refresh cycle systems(RRC)for regional short-range weather forecasting.Since the strategy periodically reinitializes the regional model(RM)from the global model(GM)forecasts to correct the large-scale drift,it has replaced the traditional full cycle(FC)strategy in many RRC systems.However,the extra spin-up in the PC strategy increases the computer burden on RRC and generates discontinuous smallscale systems among cycles.This study returns to the FC strategy but with initial fields generated by dynamic blending(DB)and data assimilation(DA).The DB ingests the time-varied large-scale information from the GM to the RM to generate less-biased background fields.Then the DA is performed.We applied the new FC strategy in a series of 7-day batch forecasts with the 3-hour cycle in July 2018,and February,April,and October 2019 over China using a Weather Research and Forecast(WRF)model-based RRC.A comparison shows that the new FC strategy results in less model bias than the PC strategy in most state variables and improves the forecast skills for moderate and light precipitation.The new FC strategy also allows the model to reach a balanced state earlier and gives favorable forecast continuity between adjacent cycles.Hence,this new FC strategy has potential to be applied in RRC forecast systems to replace the currently used PC strategy.展开更多
Ocean current forecasting is still in explorative stage of study. In the study, we face some problems that have not been met before. The solving of these problems has become fundamental premise for realizing the ocean...Ocean current forecasting is still in explorative stage of study. In the study, we face some problems that have not been met before. The solving of these problems has become fundamental premise for realizing the ocean current forecasting. In the present paper are discussed in depth the physical essence for such basic problems as the predictability of ocean current, the predictable currents, the dynamical basis for studying respectively the tidal current and circulation, the necessity of boundary model, the models on regions with different scales and their link. The foundations and plans to solve the problems are demonstrated. Finally a set of operational numerical forecasting system for ocean current is proposed.展开更多
Thunderstorm gusts are a common form of severe convective weather in the warm season in North China,and it is of great importance to correctly forecast them.At present,the forecasting of thunderstorm gusts is mainly b...Thunderstorm gusts are a common form of severe convective weather in the warm season in North China,and it is of great importance to correctly forecast them.At present,the forecasting of thunderstorm gusts is mainly based on traditional subjective methods,which fails to achieve high-resolution and high-frequency gridded forecasts based on multiple observation sources.In this paper,we propose a deep learning method called Thunderstorm Gusts TransU-net(TGTransUnet)to forecast thunderstorm gusts in North China based on multi-source gridded product data from the Institute of Urban Meteorology(IUM)with a lead time of 1 to 6 h.To determine the specific range of thunderstorm gusts,we combine three meteorological variables:radar reflectivity factor,lightning location,and 1-h maximum instantaneous wind speed from automatic weather stations(AWSs),and obtain a reasonable ground truth of thunderstorm gusts.Then,we transform the forecasting problem into an image-to-image problem in deep learning under the TG-TransUnet architecture,which is based on convolutional neural networks and a transformer.The analysis and forecast data of the enriched multi-source gridded comprehensive forecasting system for the period 2021–23 are then used as training,validation,and testing datasets.Finally,the performance of TG-TransUnet is compared with other methods.The results show that TG-TransUnet has the best prediction results at 1–6 h.The IUM is currently using this model to support the forecasting of thunderstorm gusts in North China.展开更多
Accurate soil moisture(SM)prediction is critical for understanding hydrological processes.Physics-based(PB)models exhibit large uncertainties in SM predictions arising from uncertain parameterizations and insufficient...Accurate soil moisture(SM)prediction is critical for understanding hydrological processes.Physics-based(PB)models exhibit large uncertainties in SM predictions arising from uncertain parameterizations and insufficient representation of land-surface processes.In addition to PB models,deep learning(DL)models have been widely used in SM predictions recently.However,few pure DL models have notably high success rates due to lacking physical information.Thus,we developed hybrid models to effectively integrate the outputs of PB models into DL models to improve SM predictions.To this end,we first developed a hybrid model based on the attention mechanism to take advantage of PB models at each forecast time scale(attention model).We further built an ensemble model that combined the advantages of different hybrid schemes(ensemble model).We utilized SM forecasts from the Global Forecast System to enhance the convolutional long short-term memory(ConvLSTM)model for 1–16 days of SM predictions.The performances of the proposed hybrid models were investigated and compared with two existing hybrid models.The results showed that the attention model could leverage benefits of PB models and achieved the best predictability of drought events among the different hybrid models.Moreover,the ensemble model performed best among all hybrid models at all forecast time scales and different soil conditions.It is highlighted that the ensemble model outperformed the pure DL model over 79.5%of in situ stations for 16-day predictions.These findings suggest that our proposed hybrid models can adequately exploit the benefits of PB model outputs to aid DL models in making SM predictions.展开更多
The present study uses the nonlinear singular vector(NFSV)approach to identify the optimally-growing tendency perturbations of the Weather Research and Forecasting(WRF)model for tropical cyclone(TC)intensity forecasts...The present study uses the nonlinear singular vector(NFSV)approach to identify the optimally-growing tendency perturbations of the Weather Research and Forecasting(WRF)model for tropical cyclone(TC)intensity forecasts.For nine selected TC cases,the NFSV-tendency perturbations of the WRF model,including components of potential temperature and/or moisture,are calculated when TC intensities are forecasted with a 24-hour lead time,and their respective potential temperature components are demonstrated to have more impact on the TC intensity forecasts.The perturbations coherently show barotropic structure around the central location of the TCs at the 24-hour lead time,and their dominant energies concentrate in the middle layers of the atmosphere.Moreover,such structures do not depend on TC intensities and subsequent development of the TC.The NFSV-tendency perturbations may indicate that the model uncertainty that is represented by tendency perturbations but associated with the inner-core of TCs,makes larger contributions to the TC intensity forecast uncertainty.Further analysis shows that the TC intensity forecast skill could be greatly improved as preferentially superimposing an appropriate tendency perturbation associated with the sensitivity of NFSVs to correct the model,even if using a WRF with coarse resolution.展开更多
A scheme of assimilating radar-retrieved water vapor is adopted to improve the quality of NWP initial field for improvement of the accuracy of short-range precipitation prediction. To reveal the impact of the assimila...A scheme of assimilating radar-retrieved water vapor is adopted to improve the quality of NWP initial field for improvement of the accuracy of short-range precipitation prediction. To reveal the impact of the assimilation of radar-retrieved water vapor on short-term precipitation forecast, three parallel experiments, cold start, hot start and hot start plus the assimilation of radar-retrieved water vapor, are designed to simulate the 31 days of May, 2013 with a fine numerical model for South China. Furthermore, a case of heavy rain that occurred from 8-9 May 2013 over the region from the southwest of Guangdong province to Pearl River Delta is analyzed in detail. Results show that the cold start experiment is not conducive to precipitation 12 hours ahead; the hot start experiment is able to reproduce well the first6 hours of precipitation, but badly for subsequent prediction; the experiment of assimilating radar-retrieved water vapor is not only able to simulate well the precipitation 6 hours ahead, but also able to correctly predict the evolution of rain bands from 6 to 12 hours in advance.展开更多
A running mean bias (RMB) correction ap- proach was applied to the forecasts of near-surface variables in a seasonal short-range ensemble forecasting experiment with 57 consecutive cases during summer 2010 in the no...A running mean bias (RMB) correction ap- proach was applied to the forecasts of near-surface variables in a seasonal short-range ensemble forecasting experiment with 57 consecutive cases during summer 2010 in the northern China region. To determine a proper training window length for calculating RMB, window lengths from 2 to 20 days were evaluated, and 16 days was taken as an optimal window length, since it receives most of the benefit from extending the window length. The raw and 16-day RMB corrected ensembles were then evaluated for their ensemble mean forecast skills. The results show that the raw ensemble has obvious bias in all near-surface variables. The RMB correction can remove the bias reasonably well, and generate an unbiased ensemble. The bias correction not only reduces the ensemble mean forecast error, but also results in a better spreaderror relationship. Moreover, two methods for computing calibrated probabilistic forecast (PF) were also evaluated through the 57 case dates: 1) using the relative frequency from the RMB-eorrected ensemble; 2) computing the forecasting probabilities based on a historical rank histogram. The first method outperforms the second one, as it can improve both the reliability and the resolution of the PFs, while the second method only has a small effect on the reliability, indicating the necessity and importance of removing the systematic errors from the ensemble.展开更多
A back-propagation neural network (BPNN) was used to establish relationships between the shortrange (0-3-h) rainfall and the predictors ranging from extrapolative forecasts of radar reflectivity, satelliteestimate...A back-propagation neural network (BPNN) was used to establish relationships between the shortrange (0-3-h) rainfall and the predictors ranging from extrapolative forecasts of radar reflectivity, satelliteestimated cloud-top temperature, lightning strike rates, and Nested Grid Model (NGM) outputs. Quan- titative precipitation forecasts (QPF) and the probabilities of categorical precipitation were obtained. Results of the BPNN algorithm were compared to the results obtained from the multiple linear regression algorithm for an independent dataset from the 1999 warm season over the continental United States. A sample forecast was made over the southeastern United States. Results showed that the BPNN categorical rainfall forecasts agreed well with Stage Ⅲ observations in terms of the size and shape of the area of rainfall. The BPNN tended to over-forecast the spatial extent of heavier rainfall amounts, but the positioning of the areas with rainfall ≥25.4 mm was still generally accurate. It appeared that the BPNN and linear regression approaches produce forecasts of very similar quality, although in some respects BPNN slightly outperformed the regression.展开更多
Forecasting uncertainties among meteorological fields have long been recognized as the main limitation on the accuracy and predictability of air quality forecasts.However,the particular impact of meteorological foreca...Forecasting uncertainties among meteorological fields have long been recognized as the main limitation on the accuracy and predictability of air quality forecasts.However,the particular impact of meteorological forecasting uncertainties on air quality forecasts specific to different seasons is still not well known.In this study,a series of forecasts with different forecast lead times for January,April,July,and October of 2018 are conducted over the Beijing-Tianjin-Hebei(BTH)region and the impacts of meteorological forecasting uncertainties on surface PM_(2.5)concentration forecasts with each lead time are investigated.With increased lead time,the forecasted PM_(2.5)concentrations significantly change and demonstrate obvious seasonal variations.In general,the forecasting uncertainties in monthly mean surface PM_(2.5)concentrations in the BTH region due to lead time are the largest(80%)in spring,followed by autumn(~50%),summer(~40%),and winter(20%).In winter,the forecasting uncertainties in total surface PM_(2.5)mass due to lead time are mainly due to the uncertainties in PBL heights and hence the PBL mixing of anthropogenic primary particles.In spring,the forecasting uncertainties are mainly from the impacts of lead time on lower-tropospheric northwesterly winds,thereby further enhancing the condensation production of anthropogenic secondary particles by the long-range transport of natural dust.In summer,the forecasting uncertainties result mainly from the decrease in dry and wet deposition rates,which are associated with the reduction of near-surface wind speed and precipitation rate.In autumn,the forecasting uncertainties arise mainly from the change in the transport of remote natural dust and anthropogenic particles,which is associated with changes in the large-scale circulation.展开更多
Artificial intelligence(AI)has already demonstrated its proficiency at difficult scientific tasks like predicting how proteins will fold and identifying new astronomical objects in masses of observational data[1].Now,...Artificial intelligence(AI)has already demonstrated its proficiency at difficult scientific tasks like predicting how proteins will fold and identifying new astronomical objects in masses of observational data[1].Now,recent results suggest that AI also excels at weather forecasting.For global predictions,GraphCast,an AI system developed by Google subsidiary DeepMind(London,UK),outperforms the state-of-the-art model from the European Centre for Medium-Range Weather Forecasts(ECMWF),providing more accurate projections of variables such as temperature and humidity 90%of the time[2,3].Other AI systems,including Pangu-Weather from the Chinese tech company Huawei(Shenzhen,China)[4],can also match or beat traditional global forecasting models.展开更多
Since the Beijing 2022 Winter Olympics was the first Winter Olympics in history held in continental winter monsoon climate conditions across complex terrain areas,there is a deficiency of relevant research,operational...Since the Beijing 2022 Winter Olympics was the first Winter Olympics in history held in continental winter monsoon climate conditions across complex terrain areas,there is a deficiency of relevant research,operational techniques,and experience.This made providing meteorological services for this event particularly challenging.The China Meteorological Administration(CMA)Earth System Modeling and Prediction Centre,achieved breakthroughs in research on short-and medium-term deterministic and ensemble numerical predictions.Several key technologies crucial for precise winter weather services during the Winter Olympics were developed.A comprehensive framework,known as the Operational System for High-Precision Weather Forecasting for the Winter Olympics,was established.Some of these advancements represent the highest level of capabilities currently available in China.The meteorological service provided to the Beijing 2022 Games also exceeded previous Winter Olympic Games in both variety and quality.This included achievements such as the“100-meter level,minute level”downscaled spatiotemporal resolution and forecasts spanning 1 to 15 days.Around 30 new technologies and over 60 kinds of products that align with the requirements of the Winter Olympics Organizing Committee were developed,and many of these techniques have since been integrated into the CMA’s operational national forecasting systems.These accomplishments were facilitated by a dedicated weather forecasting and research initiative,in conjunction with the preexisting real-time operational forecasting systems of the CMA.This program represents one of the five subprograms of the WMO’s high-impact weather forecasting demonstration project(SMART2022),and continues to play an important role in their Regional Association(RA)II Research Development Project(Hangzhou RDP).Therefore,the research accomplishments and meteorological service experiences from this program will be carried forward into forthcoming highimpact weather forecasting activities.This article provides an overview and assessment of this program and the operational national forecasting systems.展开更多
The immerging three dimensional(3D) metal-organic framework(MOF)-reinforced composite solid-state electrolytes have attracted great interest because of the enhanced ionic conductivity and mechanical properties. Howeve...The immerging three dimensional(3D) metal-organic framework(MOF)-reinforced composite solid-state electrolytes have attracted great interest because of the enhanced ionic conductivity and mechanical properties. However, the defective spatial arrangement of MOFs restricted by fabrication methodology leads to insufficient lithium ion transport in electrolytes. Herein, a 3D interconnected MOF framework tailored for all-solid-state electrolytes is rationally designed by a universal polydopamine(PDA)-engineered "double-sided tape" strategy. The PDA serves as a double-sided tape, firmly adhering on the special single-layer Nylon grid as well as offering uniform nucleation sites to anchor the metal nodes to ensure continuous growth of well-ordered MOFs. Benefiting from the Lewis acid feature of MOFs and its cage effect toward TFSI^(-), a fast and homogeneous lithium ion transport can be achieved through the internal channels within neighboring MOFs and the continuous MOFs/polymer interfaces both along the short-range circumferential boundary of Nylon fiber. The resultant composite electrolytes exhibit high lithium ion conductivity and prominent mechanical properties, rendering excellent cyclic stability whether used in coin or pouch cells. This work demonstrates a widely applicable "double-sided tape"strategy for controllable spatial arrangement of MOF nanoparticles on optional substrates, which provides a scalable approach to rationally construct desired lithium ion pathways within composite electrolytes.展开更多
Chinese FengYun-2C(FY-2C) satellite data were combined into the Local Analysis and Prediction System(LAPS) model to obtain three-dimensional cloud parameters and rain content. These parameters analyzed by LAPS were us...Chinese FengYun-2C(FY-2C) satellite data were combined into the Local Analysis and Prediction System(LAPS) model to obtain three-dimensional cloud parameters and rain content. These parameters analyzed by LAPS were used to initialize the Global/Regional Assimilation and Prediction System model(GRAPES) in China to predict precipitation in a rainstorm case in the country. Three prediction experiments were conducted and were used to investigate the impacts of FY-2C satellite data on cloud analysis of LAPS and on short range precipitation forecasts. In the first experiment, the initial cloud fields was zero value. In the second, the initial cloud fields were cloud liquid water, cloud ice, and rain content derived from LAPS without combining the satellite data. In the third experiment, the initial cloud fields were cloud liquid water, cloud ice, and rain content derived from LAPS including satellite data. The results indicated that the FY-2C satellite data combination in LAPS can show more realistic cloud distributions, and the model simulation for precipitation in 1–6 h had certain improvements over that when satellite data and complex cloud analysis were not applied.展开更多
To assess whether a development strategy will be profitable enough,production forecasting is a crucial and difficult step in the process.The development history of other reservoirs in the same class tends to be studie...To assess whether a development strategy will be profitable enough,production forecasting is a crucial and difficult step in the process.The development history of other reservoirs in the same class tends to be studied to make predictions accurate.However,the permeability field,well patterns,and development regime must all be similar for two reservoirs to be considered in the same class.This results in very few available experiences from other reservoirs even though there is a lot of historical information on numerous reservoirs because it is difficult to find such similar reservoirs.This paper proposes a learn-to-learn method,which can better utilize a vast amount of historical data from various reservoirs.Intuitively,the proposed method first learns how to learn samples before directly learning rules in samples.Technically,by utilizing gradients from networks with independent parameters and copied structure in each class of reservoirs,the proposed network obtains the optimal shared initial parameters which are regarded as transferable information across different classes.Based on that,the network is able to predict future production indices for the target reservoir by only training with very limited samples collected from reservoirs in the same class.Two cases further demonstrate its superiority in accuracy to other widely-used network methods.展开更多
For more than a century, forecasting models have been crucial in a variety of fields. Models can offer the most accurate forecasting outcomes if error terms are normally distributed. Finding a good statistical model f...For more than a century, forecasting models have been crucial in a variety of fields. Models can offer the most accurate forecasting outcomes if error terms are normally distributed. Finding a good statistical model for time series predicting imports in Malaysia is the main target of this study. The decision made during this study mostly addresses the unrestricted error correction model (UECM), and composite model (Combined regression—ARIMA). The imports of Malaysia from the first quarter of 1991 to the third quarter of 2022 are employed in this study’s quarterly time series data. The forecasting outcomes of the current study demonstrated that the composite model offered more probabilistic data, which improved forecasting the volume of Malaysia’s imports. The composite model, and the UECM model in this study are linear models based on responses to Malaysia’s imports. Future studies might compare the performance of linear and nonlinear models in forecasting.展开更多
In a“low-carbon”context,the power load is affected by the coupling of multiple factors,which gradually evolves from the traditional“pure load”to the generalized load with the dual characteristics of“load+power su...In a“low-carbon”context,the power load is affected by the coupling of multiple factors,which gradually evolves from the traditional“pure load”to the generalized load with the dual characteristics of“load+power supply.”Traditional time-series forecasting methods are no longer suitable owing to the complexity and uncertainty associated with generalized loads.From the perspective of image processing,this study proposes a graphical short-term prediction method for generalized loads based on modal decomposition.First,the datasets are normalized and feature-filtered by comparing the results of Xtreme gradient boosting,gradient boosted decision tree,and random forest algorithms.Subsequently,the generalized load data are decomposed into three sets of modalities by modal decomposition,and red,green,and blue(RGB)images are generated using them as the pixel values of the R,G,and B channels.The generated images are diversified,and an optimized DenseNet neural network was used for training and prediction.Finally,the base load,wind power,and photovoltaic power generation data are selected,and the characteristic curves of the generalized load scenarios under different permeabilities of wind power and photovoltaic power generation are obtained using the density-based spatial clustering of applications with noise algorithm.Based on the proposed graphical forecasting method,the feasibility of the generalized load graphical forecasting method is verified by comparing it with the traditional time-series forecasting method.展开更多
Time series data plays a crucial role in intelligent transportation systems.Traffic flow forecasting represents a precise estimation of future traffic flow within a specific region and time interval.Existing approache...Time series data plays a crucial role in intelligent transportation systems.Traffic flow forecasting represents a precise estimation of future traffic flow within a specific region and time interval.Existing approaches,including sequence periodic,regression,and deep learning models,have shown promising results in short-term series forecasting.However,forecasting scenarios specifically focused on holiday traffic flow present unique challenges,such as distinct traffic patterns during vacations and the increased demand for long-term forecastings.Consequently,the effectiveness of existing methods diminishes in such scenarios.Therefore,we propose a novel longterm forecasting model based on scene matching and embedding fusion representation to forecast long-term holiday traffic flow.Our model comprises three components:the similar scene matching module,responsible for extracting Similar Scene Features;the long-short term representation fusion module,which integrates scenario embeddings;and a simple fully connected layer at the head for making the final forecasting.Experimental results on real datasets demonstrate that our model outperforms other methods,particularly in medium and long-term forecasting scenarios.展开更多
Appropriately characterising the mixed space-time relations of the contagion process caused by hybrid space and time factors remains the primary challenge in COVID-19 forecasting.However,in previous deep learning mode...Appropriately characterising the mixed space-time relations of the contagion process caused by hybrid space and time factors remains the primary challenge in COVID-19 forecasting.However,in previous deep learning models for epidemic forecasting,spatial and temporal variations are captured separately.A unified model is developed to cover all spatio-temporal relations.However,this measure is insufficient for modelling the complex spatio-temporal relations of infectious disease transmission.A dynamic adaptive spatio-temporal graph network(DASTGN)is proposed based on attention mechanisms to improve prediction accuracy.In DASTGN,complex spatio-temporal relations are depicted by adaptively fusing the mixed space-time effects and dynamic space-time dependency structure.This dual-scale model considers the time-specific,space-specific,and direct effects of the propagation process at the fine-grained level.Furthermore,the model characterises impacts from various space-time neighbour blocks under time-varying interventions at the coarse-grained level.The performance comparisons on the three COVID-19 datasets reveal that DASTGN achieves state-of-the-art results with a maximum improvement of 17.092%in the root mean-square error and 11.563%in the mean absolute error.Experimental results indicate that the mechanisms of designing DASTGN can effectively detect some spreading characteristics of COVID-19.The spatio-temporal weight matrices learned in each proposed module reveal diffusion patterns in various scenarios.In conclusion,DASTGN has successfully captured the dynamic spatio-temporal variations of COVID-19,and considering multiple dynamic space-time relationships is essential in epidemic forecasting.展开更多
基金Key R&D Program of Xizang Autonomous Region(XZ202101ZY0004G)National Natural Science Foundation of China(U2142202)+1 种基金National Key R&D Program of China(2022YFC3004104)Key Innovation Team of China Meteor-ological Administration(CMA2022ZD07)。
文摘Short-duration heavy rainfall(SHR),as delineated by the National Meteorological Center of the China Me-teorological Administration,is characterized by hourly rainfall amounts no less than 20.0 mm.SHR is one of the most common convective weather phenomena that can cause severe damage.Short-range forecasting of SHR is an important part of operational severe weather prediction.In the present study,an improved objective SHR forecasting scheme was developed by adopting the ingredients-based methodology and using the fuzzy logic approach.The 1.0°×1.0°National Centers for Environmental Prediction(NCEP)final analysis data and the ordinary rainfall(0.1-19.9 mm h-1)and SHR observational data from 411 stations were used in the improved scheme.The best lifted index,the total precipitable water,the 925 hPa specific humidity(Q 925),and the 925 hPa divergence(DIV 925)were selected as predictors based on objective analysis.Continuously distributed membership functions of predictors were obtained based on relative frequency analysis.The weights of predictors were also objectively determined.Experiments with a typhoon SHR case and a spring SHR case show that the main possible areas could be captured by the improved scheme.Verification of SHR forecasts within 96 hours with NCEP global forecasts 1.0°×1.0°data initiated at 08:00 Beijing Time during the warm seasons in 2015 show the results were improved from both deterministic and probabilistic perspectives.This study provides an objectively feasible choice for short-range guidance forecasts of SHR.The scheme can be applied to other convective phenomena.
基金jointly supported by the National Natural Science Foundation of China(Grant No.U1811464)the Hydraulic Innovation Project of Science and Technology of Guangdong Province of China(Grant No.2022-01)the Guangzhou Basic and Applied Basic Research Foundation(Grant No.202201011472)。
文摘Due to various technical issues,existing numerical weather prediction(NWP)models often perform poorly at forecasting rainfall in the first several hours.To correct the bias of an NWP model and improve the accuracy of short-range precipitation forecasting,we propose a deep learning-based approach called UNet Mask,which combines NWP forecasts with the output of a convolutional neural network called UNet.The UNet Mask involves training the UNet on historical data from the NWP model and gridded rainfall observations for 6-hour precipitation forecasting.The overlap of the UNet output and the NWP forecasts at the same rainfall threshold yields a mask.The UNet Mask blends the UNet output and the NWP forecasts by taking the maximum between them and passing through the mask,which provides the corrected 6-hour rainfall forecasts.We evaluated UNet Mask on a test set and in real-time verification.The results showed that UNet Mask outperforms the NWP model in 6-hour precipitation prediction by reducing the FAR and improving CSI scores.Sensitivity tests also showed that different small rainfall thresholds applied to the UNet and the NWP model have different effects on UNet Mask's forecast performance.This study shows that UNet Mask is a promising approach for improving rainfall forecasting of NWP models.
基金the two anonymous reviewers.This work is supported by the National Key R&D Program of China(2018YFC1506803,2019YFB2102901)National Natural Science Foundation of China(Grant 41705135,41790474).
文摘The partial cycle(PC)strategy has been used in many rapid refresh cycle systems(RRC)for regional short-range weather forecasting.Since the strategy periodically reinitializes the regional model(RM)from the global model(GM)forecasts to correct the large-scale drift,it has replaced the traditional full cycle(FC)strategy in many RRC systems.However,the extra spin-up in the PC strategy increases the computer burden on RRC and generates discontinuous smallscale systems among cycles.This study returns to the FC strategy but with initial fields generated by dynamic blending(DB)and data assimilation(DA).The DB ingests the time-varied large-scale information from the GM to the RM to generate less-biased background fields.Then the DA is performed.We applied the new FC strategy in a series of 7-day batch forecasts with the 3-hour cycle in July 2018,and February,April,and October 2019 over China using a Weather Research and Forecast(WRF)model-based RRC.A comparison shows that the new FC strategy results in less model bias than the PC strategy in most state variables and improves the forecast skills for moderate and light precipitation.The new FC strategy also allows the model to reach a balanced state earlier and gives favorable forecast continuity between adjacent cycles.Hence,this new FC strategy has potential to be applied in RRC forecast systems to replace the currently used PC strategy.
文摘Ocean current forecasting is still in explorative stage of study. In the study, we face some problems that have not been met before. The solving of these problems has become fundamental premise for realizing the ocean current forecasting. In the present paper are discussed in depth the physical essence for such basic problems as the predictability of ocean current, the predictable currents, the dynamical basis for studying respectively the tidal current and circulation, the necessity of boundary model, the models on regions with different scales and their link. The foundations and plans to solve the problems are demonstrated. Finally a set of operational numerical forecasting system for ocean current is proposed.
基金supported in part by the Beijing Natural Science Foundation(Grant No.8222051)the National Key R&D Program of China(Grant No.2022YFC3004103)+2 种基金the National Natural Foundation of China(Grant Nos.42275003 and 42275012)the China Meteorological Administration Key Innovation Team(Grant Nos.CMA2022ZD04 and CMA2022ZD07)the Beijing Science and Technology Program(Grant No.Z221100005222012).
文摘Thunderstorm gusts are a common form of severe convective weather in the warm season in North China,and it is of great importance to correctly forecast them.At present,the forecasting of thunderstorm gusts is mainly based on traditional subjective methods,which fails to achieve high-resolution and high-frequency gridded forecasts based on multiple observation sources.In this paper,we propose a deep learning method called Thunderstorm Gusts TransU-net(TGTransUnet)to forecast thunderstorm gusts in North China based on multi-source gridded product data from the Institute of Urban Meteorology(IUM)with a lead time of 1 to 6 h.To determine the specific range of thunderstorm gusts,we combine three meteorological variables:radar reflectivity factor,lightning location,and 1-h maximum instantaneous wind speed from automatic weather stations(AWSs),and obtain a reasonable ground truth of thunderstorm gusts.Then,we transform the forecasting problem into an image-to-image problem in deep learning under the TG-TransUnet architecture,which is based on convolutional neural networks and a transformer.The analysis and forecast data of the enriched multi-source gridded comprehensive forecasting system for the period 2021–23 are then used as training,validation,and testing datasets.Finally,the performance of TG-TransUnet is compared with other methods.The results show that TG-TransUnet has the best prediction results at 1–6 h.The IUM is currently using this model to support the forecasting of thunderstorm gusts in North China.
基金supported by the Natural Science Foundation of China(Grant Nos.42088101 and 42205149)Zhongwang WEI was supported by the Natural Science Foundation of China(Grant No.42075158)+1 种基金Wei SHANGGUAN was supported by the Natural Science Foundation of China(Grant No.41975122)Yonggen ZHANG was supported by the National Natural Science Foundation of Tianjin(Grant No.20JCQNJC01660).
文摘Accurate soil moisture(SM)prediction is critical for understanding hydrological processes.Physics-based(PB)models exhibit large uncertainties in SM predictions arising from uncertain parameterizations and insufficient representation of land-surface processes.In addition to PB models,deep learning(DL)models have been widely used in SM predictions recently.However,few pure DL models have notably high success rates due to lacking physical information.Thus,we developed hybrid models to effectively integrate the outputs of PB models into DL models to improve SM predictions.To this end,we first developed a hybrid model based on the attention mechanism to take advantage of PB models at each forecast time scale(attention model).We further built an ensemble model that combined the advantages of different hybrid schemes(ensemble model).We utilized SM forecasts from the Global Forecast System to enhance the convolutional long short-term memory(ConvLSTM)model for 1–16 days of SM predictions.The performances of the proposed hybrid models were investigated and compared with two existing hybrid models.The results showed that the attention model could leverage benefits of PB models and achieved the best predictability of drought events among the different hybrid models.Moreover,the ensemble model performed best among all hybrid models at all forecast time scales and different soil conditions.It is highlighted that the ensemble model outperformed the pure DL model over 79.5%of in situ stations for 16-day predictions.These findings suggest that our proposed hybrid models can adequately exploit the benefits of PB model outputs to aid DL models in making SM predictions.
基金jointly sponsored by the National Key Research and Development Program of China (Grant No. 2018YFC1506402)the National Natural Science Foundation of China (Grant Nos. 41930971, 41575061 and 41775061)
文摘The present study uses the nonlinear singular vector(NFSV)approach to identify the optimally-growing tendency perturbations of the Weather Research and Forecasting(WRF)model for tropical cyclone(TC)intensity forecasts.For nine selected TC cases,the NFSV-tendency perturbations of the WRF model,including components of potential temperature and/or moisture,are calculated when TC intensities are forecasted with a 24-hour lead time,and their respective potential temperature components are demonstrated to have more impact on the TC intensity forecasts.The perturbations coherently show barotropic structure around the central location of the TCs at the 24-hour lead time,and their dominant energies concentrate in the middle layers of the atmosphere.Moreover,such structures do not depend on TC intensities and subsequent development of the TC.The NFSV-tendency perturbations may indicate that the model uncertainty that is represented by tendency perturbations but associated with the inner-core of TCs,makes larger contributions to the TC intensity forecast uncertainty.Further analysis shows that the TC intensity forecast skill could be greatly improved as preferentially superimposing an appropriate tendency perturbation associated with the sensitivity of NFSVs to correct the model,even if using a WRF with coarse resolution.
基金National Natural Science Foundation of China(41075040,41475102)"973"project for typhoon(2015CB452802)+1 种基金CMA Special Welfare Research Fund(GYHY201406009)Public Welfare(Meteorological Sector)Research Fund(GYHY201406003)
文摘A scheme of assimilating radar-retrieved water vapor is adopted to improve the quality of NWP initial field for improvement of the accuracy of short-range precipitation prediction. To reveal the impact of the assimilation of radar-retrieved water vapor on short-term precipitation forecast, three parallel experiments, cold start, hot start and hot start plus the assimilation of radar-retrieved water vapor, are designed to simulate the 31 days of May, 2013 with a fine numerical model for South China. Furthermore, a case of heavy rain that occurred from 8-9 May 2013 over the region from the southwest of Guangdong province to Pearl River Delta is analyzed in detail. Results show that the cold start experiment is not conducive to precipitation 12 hours ahead; the hot start experiment is able to reproduce well the first6 hours of precipitation, but badly for subsequent prediction; the experiment of assimilating radar-retrieved water vapor is not only able to simulate well the precipitation 6 hours ahead, but also able to correctly predict the evolution of rain bands from 6 to 12 hours in advance.
基金supported by a project of the National Natural Science Foundation of China (Grant No. 41305099)
文摘A running mean bias (RMB) correction ap- proach was applied to the forecasts of near-surface variables in a seasonal short-range ensemble forecasting experiment with 57 consecutive cases during summer 2010 in the northern China region. To determine a proper training window length for calculating RMB, window lengths from 2 to 20 days were evaluated, and 16 days was taken as an optimal window length, since it receives most of the benefit from extending the window length. The raw and 16-day RMB corrected ensembles were then evaluated for their ensemble mean forecast skills. The results show that the raw ensemble has obvious bias in all near-surface variables. The RMB correction can remove the bias reasonably well, and generate an unbiased ensemble. The bias correction not only reduces the ensemble mean forecast error, but also results in a better spreaderror relationship. Moreover, two methods for computing calibrated probabilistic forecast (PF) were also evaluated through the 57 case dates: 1) using the relative frequency from the RMB-eorrected ensemble; 2) computing the forecasting probabilities based on a historical rank histogram. The first method outperforms the second one, as it can improve both the reliability and the resolution of the PFs, while the second method only has a small effect on the reliability, indicating the necessity and importance of removing the systematic errors from the ensemble.
文摘A back-propagation neural network (BPNN) was used to establish relationships between the shortrange (0-3-h) rainfall and the predictors ranging from extrapolative forecasts of radar reflectivity, satelliteestimated cloud-top temperature, lightning strike rates, and Nested Grid Model (NGM) outputs. Quan- titative precipitation forecasts (QPF) and the probabilities of categorical precipitation were obtained. Results of the BPNN algorithm were compared to the results obtained from the multiple linear regression algorithm for an independent dataset from the 1999 warm season over the continental United States. A sample forecast was made over the southeastern United States. Results showed that the BPNN categorical rainfall forecasts agreed well with Stage Ⅲ observations in terms of the size and shape of the area of rainfall. The BPNN tended to over-forecast the spatial extent of heavier rainfall amounts, but the positioning of the areas with rainfall ≥25.4 mm was still generally accurate. It appeared that the BPNN and linear regression approaches produce forecasts of very similar quality, although in some respects BPNN slightly outperformed the regression.
基金supported by the National Key Research and Development Program of China(No.2022YFC3700701)National Natural Science Foundation of China(Grant Nos.41775146,42061134009)+1 种基金USTC Research Funds of the Double First-Class Initiative(YD2080002007)Strategic Priority Research Program of Chinese Academy of Sciences(XDB41000000).
文摘Forecasting uncertainties among meteorological fields have long been recognized as the main limitation on the accuracy and predictability of air quality forecasts.However,the particular impact of meteorological forecasting uncertainties on air quality forecasts specific to different seasons is still not well known.In this study,a series of forecasts with different forecast lead times for January,April,July,and October of 2018 are conducted over the Beijing-Tianjin-Hebei(BTH)region and the impacts of meteorological forecasting uncertainties on surface PM_(2.5)concentration forecasts with each lead time are investigated.With increased lead time,the forecasted PM_(2.5)concentrations significantly change and demonstrate obvious seasonal variations.In general,the forecasting uncertainties in monthly mean surface PM_(2.5)concentrations in the BTH region due to lead time are the largest(80%)in spring,followed by autumn(~50%),summer(~40%),and winter(20%).In winter,the forecasting uncertainties in total surface PM_(2.5)mass due to lead time are mainly due to the uncertainties in PBL heights and hence the PBL mixing of anthropogenic primary particles.In spring,the forecasting uncertainties are mainly from the impacts of lead time on lower-tropospheric northwesterly winds,thereby further enhancing the condensation production of anthropogenic secondary particles by the long-range transport of natural dust.In summer,the forecasting uncertainties result mainly from the decrease in dry and wet deposition rates,which are associated with the reduction of near-surface wind speed and precipitation rate.In autumn,the forecasting uncertainties arise mainly from the change in the transport of remote natural dust and anthropogenic particles,which is associated with changes in the large-scale circulation.
文摘Artificial intelligence(AI)has already demonstrated its proficiency at difficult scientific tasks like predicting how proteins will fold and identifying new astronomical objects in masses of observational data[1].Now,recent results suggest that AI also excels at weather forecasting.For global predictions,GraphCast,an AI system developed by Google subsidiary DeepMind(London,UK),outperforms the state-of-the-art model from the European Centre for Medium-Range Weather Forecasts(ECMWF),providing more accurate projections of variables such as temperature and humidity 90%of the time[2,3].Other AI systems,including Pangu-Weather from the Chinese tech company Huawei(Shenzhen,China)[4],can also match or beat traditional global forecasting models.
基金This work was jointly supported by the National Natural Science Foundation of China(Grant Nos.41975137,42175012,and 41475097)the National Key Research and Development Program(Grant No.2018YFF0300103).
文摘Since the Beijing 2022 Winter Olympics was the first Winter Olympics in history held in continental winter monsoon climate conditions across complex terrain areas,there is a deficiency of relevant research,operational techniques,and experience.This made providing meteorological services for this event particularly challenging.The China Meteorological Administration(CMA)Earth System Modeling and Prediction Centre,achieved breakthroughs in research on short-and medium-term deterministic and ensemble numerical predictions.Several key technologies crucial for precise winter weather services during the Winter Olympics were developed.A comprehensive framework,known as the Operational System for High-Precision Weather Forecasting for the Winter Olympics,was established.Some of these advancements represent the highest level of capabilities currently available in China.The meteorological service provided to the Beijing 2022 Games also exceeded previous Winter Olympic Games in both variety and quality.This included achievements such as the“100-meter level,minute level”downscaled spatiotemporal resolution and forecasts spanning 1 to 15 days.Around 30 new technologies and over 60 kinds of products that align with the requirements of the Winter Olympics Organizing Committee were developed,and many of these techniques have since been integrated into the CMA’s operational national forecasting systems.These accomplishments were facilitated by a dedicated weather forecasting and research initiative,in conjunction with the preexisting real-time operational forecasting systems of the CMA.This program represents one of the five subprograms of the WMO’s high-impact weather forecasting demonstration project(SMART2022),and continues to play an important role in their Regional Association(RA)II Research Development Project(Hangzhou RDP).Therefore,the research accomplishments and meteorological service experiences from this program will be carried forward into forthcoming highimpact weather forecasting activities.This article provides an overview and assessment of this program and the operational national forecasting systems.
基金supported by the Anhui Provincial Natural Science Foundation (2308085MB58)the National Natural Science Foundation of China (NSFC, 21908037, 22278107)the Anhui Provincial Development and Reform Commission (2021-442)。
文摘The immerging three dimensional(3D) metal-organic framework(MOF)-reinforced composite solid-state electrolytes have attracted great interest because of the enhanced ionic conductivity and mechanical properties. However, the defective spatial arrangement of MOFs restricted by fabrication methodology leads to insufficient lithium ion transport in electrolytes. Herein, a 3D interconnected MOF framework tailored for all-solid-state electrolytes is rationally designed by a universal polydopamine(PDA)-engineered "double-sided tape" strategy. The PDA serves as a double-sided tape, firmly adhering on the special single-layer Nylon grid as well as offering uniform nucleation sites to anchor the metal nodes to ensure continuous growth of well-ordered MOFs. Benefiting from the Lewis acid feature of MOFs and its cage effect toward TFSI^(-), a fast and homogeneous lithium ion transport can be achieved through the internal channels within neighboring MOFs and the continuous MOFs/polymer interfaces both along the short-range circumferential boundary of Nylon fiber. The resultant composite electrolytes exhibit high lithium ion conductivity and prominent mechanical properties, rendering excellent cyclic stability whether used in coin or pouch cells. This work demonstrates a widely applicable "double-sided tape"strategy for controllable spatial arrangement of MOF nanoparticles on optional substrates, which provides a scalable approach to rationally construct desired lithium ion pathways within composite electrolytes.
基金supported by the National Natural Science Foundation of China (41375025, 41275114, and 41275039)the National High Technology Research and Development Program of China (863 Program, 2012AA120903)+1 种基金the Public Benefit Research Foundation of the China Meteorological Administration (GYHY201106044 and GYHY201406001)the China Meteorological Administration Torrential Flood Project
文摘Chinese FengYun-2C(FY-2C) satellite data were combined into the Local Analysis and Prediction System(LAPS) model to obtain three-dimensional cloud parameters and rain content. These parameters analyzed by LAPS were used to initialize the Global/Regional Assimilation and Prediction System model(GRAPES) in China to predict precipitation in a rainstorm case in the country. Three prediction experiments were conducted and were used to investigate the impacts of FY-2C satellite data on cloud analysis of LAPS and on short range precipitation forecasts. In the first experiment, the initial cloud fields was zero value. In the second, the initial cloud fields were cloud liquid water, cloud ice, and rain content derived from LAPS without combining the satellite data. In the third experiment, the initial cloud fields were cloud liquid water, cloud ice, and rain content derived from LAPS including satellite data. The results indicated that the FY-2C satellite data combination in LAPS can show more realistic cloud distributions, and the model simulation for precipitation in 1–6 h had certain improvements over that when satellite data and complex cloud analysis were not applied.
基金This work is supported by the National Natural Science Foundation of China under Grant 52274057,52074340 and 51874335the Major Scientific and Technological Projects of CNPC under Grant ZD2019-183-008+2 种基金the Major Scientific and Technological Projects of CNOOC under Grant CCL2022RCPS0397RSNthe Science and Technology Support Plan for Youth Innovation of University in Shandong Province under Grant 2019KJH002111 Project under Grant B08028.
文摘To assess whether a development strategy will be profitable enough,production forecasting is a crucial and difficult step in the process.The development history of other reservoirs in the same class tends to be studied to make predictions accurate.However,the permeability field,well patterns,and development regime must all be similar for two reservoirs to be considered in the same class.This results in very few available experiences from other reservoirs even though there is a lot of historical information on numerous reservoirs because it is difficult to find such similar reservoirs.This paper proposes a learn-to-learn method,which can better utilize a vast amount of historical data from various reservoirs.Intuitively,the proposed method first learns how to learn samples before directly learning rules in samples.Technically,by utilizing gradients from networks with independent parameters and copied structure in each class of reservoirs,the proposed network obtains the optimal shared initial parameters which are regarded as transferable information across different classes.Based on that,the network is able to predict future production indices for the target reservoir by only training with very limited samples collected from reservoirs in the same class.Two cases further demonstrate its superiority in accuracy to other widely-used network methods.
文摘For more than a century, forecasting models have been crucial in a variety of fields. Models can offer the most accurate forecasting outcomes if error terms are normally distributed. Finding a good statistical model for time series predicting imports in Malaysia is the main target of this study. The decision made during this study mostly addresses the unrestricted error correction model (UECM), and composite model (Combined regression—ARIMA). The imports of Malaysia from the first quarter of 1991 to the third quarter of 2022 are employed in this study’s quarterly time series data. The forecasting outcomes of the current study demonstrated that the composite model offered more probabilistic data, which improved forecasting the volume of Malaysia’s imports. The composite model, and the UECM model in this study are linear models based on responses to Malaysia’s imports. Future studies might compare the performance of linear and nonlinear models in forecasting.
基金supported by the National Natural Science Foundation of China(Grant No.62063016).
文摘In a“low-carbon”context,the power load is affected by the coupling of multiple factors,which gradually evolves from the traditional“pure load”to the generalized load with the dual characteristics of“load+power supply.”Traditional time-series forecasting methods are no longer suitable owing to the complexity and uncertainty associated with generalized loads.From the perspective of image processing,this study proposes a graphical short-term prediction method for generalized loads based on modal decomposition.First,the datasets are normalized and feature-filtered by comparing the results of Xtreme gradient boosting,gradient boosted decision tree,and random forest algorithms.Subsequently,the generalized load data are decomposed into three sets of modalities by modal decomposition,and red,green,and blue(RGB)images are generated using them as the pixel values of the R,G,and B channels.The generated images are diversified,and an optimized DenseNet neural network was used for training and prediction.Finally,the base load,wind power,and photovoltaic power generation data are selected,and the characteristic curves of the generalized load scenarios under different permeabilities of wind power and photovoltaic power generation are obtained using the density-based spatial clustering of applications with noise algorithm.Based on the proposed graphical forecasting method,the feasibility of the generalized load graphical forecasting method is verified by comparing it with the traditional time-series forecasting method.
基金funded by the Natural Science Foundation of Zhejiang Province of China under Grant (No.LY21F020003)Zhejiang Science and Technology Plan Project (No.2021C02060)the Scientific Research Foundation of Hangzhou City University (No.X-202206).
文摘Time series data plays a crucial role in intelligent transportation systems.Traffic flow forecasting represents a precise estimation of future traffic flow within a specific region and time interval.Existing approaches,including sequence periodic,regression,and deep learning models,have shown promising results in short-term series forecasting.However,forecasting scenarios specifically focused on holiday traffic flow present unique challenges,such as distinct traffic patterns during vacations and the increased demand for long-term forecastings.Consequently,the effectiveness of existing methods diminishes in such scenarios.Therefore,we propose a novel longterm forecasting model based on scene matching and embedding fusion representation to forecast long-term holiday traffic flow.Our model comprises three components:the similar scene matching module,responsible for extracting Similar Scene Features;the long-short term representation fusion module,which integrates scenario embeddings;and a simple fully connected layer at the head for making the final forecasting.Experimental results on real datasets demonstrate that our model outperforms other methods,particularly in medium and long-term forecasting scenarios.
基金Youth Innovation Promotion Association CAS,Grant/Award Number:2021103Strategic Priority Research Program of Chinese Academy of Sciences,Grant/Award Number:XDC02060500。
文摘Appropriately characterising the mixed space-time relations of the contagion process caused by hybrid space and time factors remains the primary challenge in COVID-19 forecasting.However,in previous deep learning models for epidemic forecasting,spatial and temporal variations are captured separately.A unified model is developed to cover all spatio-temporal relations.However,this measure is insufficient for modelling the complex spatio-temporal relations of infectious disease transmission.A dynamic adaptive spatio-temporal graph network(DASTGN)is proposed based on attention mechanisms to improve prediction accuracy.In DASTGN,complex spatio-temporal relations are depicted by adaptively fusing the mixed space-time effects and dynamic space-time dependency structure.This dual-scale model considers the time-specific,space-specific,and direct effects of the propagation process at the fine-grained level.Furthermore,the model characterises impacts from various space-time neighbour blocks under time-varying interventions at the coarse-grained level.The performance comparisons on the three COVID-19 datasets reveal that DASTGN achieves state-of-the-art results with a maximum improvement of 17.092%in the root mean-square error and 11.563%in the mean absolute error.Experimental results indicate that the mechanisms of designing DASTGN can effectively detect some spreading characteristics of COVID-19.The spatio-temporal weight matrices learned in each proposed module reveal diffusion patterns in various scenarios.In conclusion,DASTGN has successfully captured the dynamic spatio-temporal variations of COVID-19,and considering multiple dynamic space-time relationships is essential in epidemic forecasting.