期刊文献+
共找到1,018篇文章
< 1 2 51 >
每页显示 20 50 100
Improved observation of colonized roots reveals the regulation of arbuscule development and senescence by drought stress in the arbuscular mycorrhizae of citrus
1
作者 Xilong Yin Wei Zhang +3 位作者 Zengwei Feng Guangda Feng Honghui Zhu Qing Yao 《Horticultural Plant Journal》 SCIE CAS CSCD 2024年第2期425-436,共12页
Citrus is the typical mycorrhizal fruit tree species establishing symbiosis with arbuscular mycorrhizal (AM) fungi. However, arbuscule development and senescence in colonized citrus roots, especially in response to dr... Citrus is the typical mycorrhizal fruit tree species establishing symbiosis with arbuscular mycorrhizal (AM) fungi. However, arbuscule development and senescence in colonized citrus roots, especially in response to drought stress, remain unclear, which is mainly due to the difficulty in clearing and staining lignified roots with the conventional method. Here, we improved the observation of colonized roots of citrus plants with the sectioning method, which enabled the clear observation of AM fungal structures. Furthermore, we investigated the effects of one week of drought stress on arbuscule development and senescence with the sectioning method. Microscopy observations indicated that drought stress significantly decreased mycorrhizal colonization (F%and M%) although it did not affect plant growth performance. Fluorescence probes (WGA 488 and/or Nile red) revealed that drought stress inhibited arbuscule development by increasing the percentage of arbuscules at the early stage and decreasing the percentages of arbuscules at the midterm and mature stages. Meanwhile, drought stress accelerated arbuscule senescence, which was characterized by the increased accumulation of neutral lipids. Overall, the sectioning method developed in this study enables the in-depth investigation of arbuscule status, and drought stress can inhibit arbuscule development but accelerate arbuscule senescence in the colonized roots of citrus plants. This study paves the way to elaborately dissecting the arbuscule dynamics in the roots of fruit tree species in response to diverse abiotic stresses. 展开更多
关键词 Arbuscular mycorrhizae CITRUS Drought stress Arbuscule development Arbuscule senescence Fruit tree species
下载PDF
Effects of metal lead on growth and mycorrhizae of an invasive plant species (Solidago canadensis L.) 被引量:14
2
作者 YANG Ruyi YU Guodong +1 位作者 TANG Jianjun CHEN Xin 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2008年第6期739-744,共6页
It is less known whether and how soil metal lead (Pb) impacts the invasion of exotic plants. A greenhouse experiment was conducted to estimate the effects of lead on the growth and mycorrhizae of an invasive species... It is less known whether and how soil metal lead (Pb) impacts the invasion of exotic plants. A greenhouse experiment was conducted to estimate the effects of lead on the growth and mycorrhizae of an invasive species (Solidago canadensis L.) in a microcosm system. Each microcosm unit was separated into HOST and TEST compartments by a replaceable mesh screen that allowed arbuscular mycorrhizal (AM) fungal hyphae rather than plant roots to grow into the TEST compartments. Three Pb levels (control, 300, and 600 mg/kg soil) were used in this study to simulate ambient soil and two pollution sites where S. canadensis grows. Mycorrhizal inoculum comprised five indigenous arbuscular mycorrhizal fungal species ( Glomus mosseae, Glomus versiform, Glomus diaphanum, Glomus geosporum, and Glomus etunicatum). The ^15N isotope tracer was used to quantify the mycorrhizally mediated nitrogen acquisition of plants. The results showed that S. canadensis was highly dependent on mycorrhizae. The Pb additions significantly decreased biomass and arbuscular mycorrhizal colonization (root length colonized, RLC%) but did not affect spore numbers, N (including total N and ^15N) and P uptake. The facilitating efficiency of mycorrhizae on nutrient acquisition was promoted by Pb treatments. The Pb was mostly sequestered in belowground of plant (root and rhizome). The results suggest that the high efficiency of mycorrhizae on nutrient uptake might give S. canadensis a great advantage over native species in Pb polluted soils. 展开更多
关键词 Solidago canadensis L. metal lead mycorrhizae N and P uptake Pb accumulation
下载PDF
Vesicular Arbuscular Mycorrhizae-Mediated Uptake and Thanslocation of P and Zn by Wheat in Calcareous Soil 被引量:4
3
作者 TUSHIHUA T.B.GOH 《Pedosphere》 SCIE CAS CSCD 1997年第4期317-324,共8页
Vesicular-arbuscular mycorrhizal (VAM) fungi have been credited with improving the groWth and mineral nutrition of many host plants but these effects are moderated by soil factors and nutrient balance. The combined ef... Vesicular-arbuscular mycorrhizal (VAM) fungi have been credited with improving the groWth and mineral nutrition of many host plants but these effects are moderated by soil factors and nutrient balance. The combined effects of VAM, Zn and P application on the growth and translocation of nutrients in wheat were investigated using a calcareous soil marginal in P and Zn concentrations. Wheat was grown in a growth chamber under various combinations of VAM, P and Zn with measurements done at heading stage and maturity.Vegetative dry matter accumulation was increased by P application and reduced by VAM treatments. Both P and VAM increased grain yield. Zinc concentration and uptake were generally reduced by P addition and VAM infection. There were no antagonistic effects of Zn on P acquisition in the plant. The role of VAM in enhancing the translocation of Zn and P from root to grain would be beneficial to seed setting and yield. 展开更多
关键词 calcareous soil nutrient acquisition P and Zn fertilization TRANSLOCATION vesiculararbuscular mycorrhizae
下载PDF
Soil compaction and arbuscular mycorrhizae affect seedling growth of three grasses 被引量:1
4
作者 Mark Thorne Landon Rhodes John Cardina 《Open Journal of Ecology》 2013年第7期455-463,共9页
Soil compaction is a limitation to establishment of native forest species on reclaimed surfacemined lands in Appalachia. Previously, non-native forage species such as tall fescue (Schedonorus arundinaceus(Schreb.) Dum... Soil compaction is a limitation to establishment of native forest species on reclaimed surfacemined lands in Appalachia. Previously, non-native forage species such as tall fescue (Schedonorus arundinaceus(Schreb.) Dumort., nom. cons.) have been planted because they easily established on reclaimed mine soil. There is now interest in establishing robust native prairie species to enhance biodiversity and provide greater potential for root activity in the compacted soil. We conducted a 10-week glasshouse study comparing growth of “Pete” eastern gamagrass (Tripsacum dactyloidesL.), “Bison” big bluestem (Andropogon gerardiiVitman), and “Jesup MaxQ” tall fescue at soil bulk densities (BD) of 1.0, 1.3, and 1.5 g·cm-3. We also examined effects of arbuscular-mycorrhizal fungi (AMF) on plant growthin relation to compaction. Sources of AMF were a reclaimed surface coal mine soil and a native tallgrass prairie soil. Shoot and root biomass of tall fescue and big bluestem were reduced at 1.5 BD while eastern gamagrass growth was not affected. Growth ofbig bluestem and eastern gamagrass was greaterwith AMF than without, butsimilar between AMF sources. Tall fescue growthwas not enhanced by AMF. Overall, tall fescue biomass was 3 times greater than eastern gamagrass and 6 times greater than big bluestem when comparing only AMF-colonized grasses. Eastern gamagrass and big bluestem are both slower to establish than tall fescue. Eastern gamagrass appears to be more tolerant of compaction, while big bluestem appears somewhat less tolerant. 展开更多
关键词 Soil COMPACTION ARBUSCULAR mycorrhizae PRAIRIE GRASS Establishment
下载PDF
Contribution to Confirmed &Synthesized on Mycorrhizae of <i>Tuber indicum</i>s.l. with Two Dominated &Subalpine Broadleaf Trees in Southwestern China 被引量:1
5
作者 Xiaojuan Deng Fuqiang Yu Peigui Liu 《American Journal of Plant Sciences》 2014年第21期3269-3279,共11页
The ascomata and mycorrhizae of Tuber indicum s.l. were collected under the forest of broad-leaf species Populus yunnanensis and Quercus pannosa in the field respectively. The symbiotic relationships of both trees wit... The ascomata and mycorrhizae of Tuber indicum s.l. were collected under the forest of broad-leaf species Populus yunnanensis and Quercus pannosa in the field respectively. The symbiotic relationships of both trees with T. indicum were examined and affirmed based on morphology and ITS-rDNA sequences. These two mycorrhizal combinations were successfully produced on artificially controlled substrates and cultural condition. This is the first report of a mycorrhizal association and synthesis between Chinese black truffles and poplars. A hyphal net covering the mantle’s surface of the mycorrhizae was detected in both mycorrhizal combinations. The mycorrhizal colonization of P. yunnanensis and Q. pannosa suggests that T. indicum s.l. has a broader host range and that additional corresponding wood species would be used as candidates for the cultivation of T. indicum. The nuclear-ITS sequences of the mycorrhizae included in the phylogeny of the T. indicum complex revealed that the two clades within the complex do not markedly differ with respect to their preferences for host species or geographical origin. Our results help to explain the wide distribution of both clades of the T. indicum complex. It would be more important for truffle conservation and Chinese black truffle plantation development with these two dominated & alpestrine Populus yunnanensis and Quercus pannosa at subalpine limestone areas in China. 展开更多
关键词 Host Preference Populus yunnanensis Quercus pannosa mycorrhizae TRUFFLE Conservation & Plantation
下载PDF
Efficacy of Mycorrhizae Based Manure on the Vegetative Growth of Rice Grown within Bauchi State, Nigeria
6
作者 Muhammad Auwal Ladan Fatima Aliyu Deba Muhammad Muhammad 《American Journal of Plant Sciences》 CAS 2023年第4期464-471,共8页
Background: Rice is one of the staple crops in the African continent for its ability to give maximum yields which can help to achieve food security under the sustainable development goals (SDGs);to those effects, the ... Background: Rice is one of the staple crops in the African continent for its ability to give maximum yields which can help to achieve food security under the sustainable development goals (SDGs);to those effects, the incessant use of inorganic fertilizer has been employed which proved to have devastating effect in the environment and the ecosystem at large. Therefore, the thirst for an alternative method to ensure bumper production of rice cannot be overemphasized so as to prevent soil alteration and environmental damage. Objective: This study aimed at determining the efficacy of mycorrhizae-based manure on the vegetative growth of rice as compared to inorganic fertilizer and its sustainability. Methods: Soil samples were collected from seven (7) locations (M1 - M7). Mycorrhiza were isolated from the soils and mass produced, mixed with organic waste to form manure (biofertilizer) and were applied at concentrations of 50 g, 100 g and 150 g to the potted rice in tree (3) replicates. Growth parameters observed were plant height, girth diameter, leaf broadness and leaf number. Results: The result revealed mycorrhizal spore count ranging from 1.7 × 10<sup>7</sup> - to 4.1 × 10<sup>7</sup> across the locations. The mycorrhizae-based manure gives the highest plant height of 45.33 cm as compared with the least plant height of 18.5 cm from the inorganic fertilizer. Furthermore, the biofertilizer gives a positive influence on the other parameters observed in comparison with the inorganic fertilizer. Statistical analysis shows that, the means of all the parameters except for leaf numbers were significantly different at p ≤ 0.05 across the sampling locations. Conclusions: Mycorrhizae-based manure proves to be an effective replacement of inorganic fertilizer that can boost rice production at a cheaper cost. 展开更多
关键词 BIOFERTILIZER mycorrhizae RICE Agriculture RHIZOSPHERE
下载PDF
Interactions between a Root Knot Nematode (<i>Meloidogyne exigua</i>) and Arbuscular Mycorrhizae in Coffee Plant Development (<i>Coffea arabica</i>)
7
作者 Raúl Alban Ricardo Guerrero Marcia Toro 《American Journal of Plant Sciences》 2013年第7期19-23,共5页
This paper focuses on parasitic root knot nematodes (Meloidogyne exigua) and how to decrease their pathogenic effect on coffee plants (Coffea arabica), by examining the behaviour of and the interactions between nemato... This paper focuses on parasitic root knot nematodes (Meloidogyne exigua) and how to decrease their pathogenic effect on coffee plants (Coffea arabica), by examining the behaviour of and the interactions between nematodes, coffee plant and arbuscular mycorrhizae (AM). The experiment was carried out at the seedling stage, with six (6) treatments (plants with M. exigua, plants with arbuscular mycorrhizae, plants with both organisms, and the same time, first mycorrhizae plants, then nematodes were inoculated and vice versa). After 5 months the measured variables were: dry biomass (roots and shoot), nematode knots caused by M. exigua in root, nematode juvenile (J2) found in 100.0 g of soil, and mycorrhizal percentage. Plant nutrients (P and N) contents were analysed. Significant differences were found in all the variables, but concentration N content in plants. Plants with mycorrhizae and plants with mycorrhizae and then inoculated with nematodes have the same behaviour. Control plants and plants with nematode and then inoculated with mycorrhizae behave similarly. It is thought that arbuscular mycorrhizae are formed before the nematode infestation, allowing coffee plants to regain the energy lost by the parasitic interaction. AM may help coffee plants with lignifications of the plant cell wall cuticle. As the cuticle thickens it is more difficult for nematodes to penetrate and enter into plant roots. Therefore, arbuscular mycorrhizae help coffee plants to uptake and transport nutrients, improving its nutritional status and stabilizing nematode attacks. It is suggested that symbiotic interactions help neutralize parasitic interactions. 展开更多
关键词 Arbuscular mycorrhizae MELOIDOGYNE EXIGUA COFFEE Plant Ecological INTERACTIONS Biotic Stress
下载PDF
Genome-wide analyses of mi RNAs in mycorrhizal plants in response to late blight and elucidation of the role of miR319c in tomato resistance
8
作者 Xiaoxu Zhou Zhengjie Wang +3 位作者 Chenglin Su Jun Cui Jun Meng Yushi Luan 《Horticultural Plant Journal》 SCIE CAS CSCD 2024年第6期1371-1382,共12页
Tomato(Solanum lycopersicum), an economically important vegetable crop cultivated worldwide, often suffers massive financial losses due to Phytophthora infestans(P. infestans) spread and breakouts. Arbuscular mycorrhi... Tomato(Solanum lycopersicum), an economically important vegetable crop cultivated worldwide, often suffers massive financial losses due to Phytophthora infestans(P. infestans) spread and breakouts. Arbuscular mycorrhiza(AM) fungi mediated biocontrol has demonstrated great potential in plant resistance. However, little information is available on the regulation of mycorrhizal tomato resistance against P. infestans.Therefore, microRNAs(miRNAs) sequencing technology was used to analyse miRNA and their targets in the mycorrhizal tomato after P.infestans infection. Our study showed a lower severity of necrotic lesions in mycorrhizal tomato than in nonmycorrhizal controls. We investigated 35 miRNAs that showed the opposite expression tendency in mycorrhizal and nonmycorrhizal tomato after P. infestans infection when compared with uninfected P. infestans. Among them, miR319c was upregulated in mycorrhizal tomato leaves after pathogen infection. Overexpression of miR319c or silencing of its target gene(TCP1) increased tomato resistance to P. infestans, implying that miR319c acts as a positive regulator in tomato after pathogen infection. Additionally, we examined the induced expression patterns of miR319c and TCP1 in tomato plants exposed to salicylic acid(SA) treatment, and SA content and the expression levels of SA-related genes were also measured in overexpressing transgenic plants. The result revealed that miR319c can not only participates in tomato resistance to P. infestans by regulating SA content, but also indirectly regulates the expression levels of key genes in the SA pathway by regulating TCP1. In this study, we propose a novel mechanism in which the miR319c in mycorrhizal tomato increases resistance to P. infestans. 展开更多
关键词 TOMATO Arbuscular mycorrhiza fungi Phytophthora infestans miRNA
下载PDF
General and specialized metabolites in peanut roots regulate arbuscular mycorrhizal symbiosis
9
作者 Li Cui Jianguo Wang +8 位作者 Zhaohui Tang Zheng Zhang Sha Yang Feng Guo Xinguo Li Jingjing Meng Jialei Zhang Yakov Kuzyakov Shubo Wan 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第8期2618-2632,共15页
Arbuscular mycorrhizae(AM)fungi form symbiotic associations with plant roots,providing nutritional benefits and promoting plant growth and defenses against various stresses.Metabolic changes in the roots during AM fun... Arbuscular mycorrhizae(AM)fungi form symbiotic associations with plant roots,providing nutritional benefits and promoting plant growth and defenses against various stresses.Metabolic changes in the roots during AM fungal colonization are key to understanding the development and maintenance of these symbioses.Here,we investigated metabolic changes in the roots of peanut(Arachis hypogaea L.)plants during the colonization and development of AM symbiosis,and compared them to uncolonized roots.The primary changes during the initial stage of AM colonization were in the contents and compositions of phenylpropanoid and flavonoid compounds.These compounds function in signaling pathways that regulate recognition,interactions,and pre-colonization between roots and AM fungi.Flavonoid compounds decreased by 25%when the symbiosis was fully established compared to the initial colonization stage.After AM symbiosis was established,general metabolism strongly shifted toward the formation of lipids,amino acids,carboxylic acids,and carbohydrates.Lipid compounds increased by 8.5%from the pre-symbiotic stage to well-established symbiosis.Lyso-phosphatidylcholines,which are signaling compounds,were only present in AM roots,and decreased in content after the symbiosis was established.In the initial stage of AM establishment,the content of salicylic acid increased two-fold,whereas jasmonic acid and abscisic acid decreased compared to uncolonized roots.The jasmonic acid content decreased in roots after the symbiosis was well established.AM symbiosis was associated with high levels of calcium,magnesium,and D-(+)-mannose,which stimulated seedling growth.Overall,specific metabolites that favor the establishment of AM symbiosis were common in the roots,primarily during early colonization,whereas general metabolism was strongly altered when AM symbiosis was well-established.In conclusion,specialized metabolites function as signaling compounds to establish AM symbiosis.These compounds are no longer produced after the symbiosis between the roots and AM becomes fully established. 展开更多
关键词 Arachis hypogaea L. arbuscular mycorrhizae fungi METABOLITES symbiotic association
下载PDF
Inoculation Effects of Dendrobium officinale Mycorrhizal Fungi on Their Plantlets 被引量:10
10
作者 黎勇 王小丹 +1 位作者 罗培凤 武丙琳 《Agricultural Science & Technology》 CAS 2011年第11期1580-1584,共5页
[Objective] This study aimed to explore the inoculation effects of Dendrobium officinale mycorrhizal fungi on their plantlets. [Method] Endophytic strains Tj1, Tj2 and Tj3 were obtained by isolation and purification f... [Objective] This study aimed to explore the inoculation effects of Dendrobium officinale mycorrhizal fungi on their plantlets. [Method] Endophytic strains Tj1, Tj2 and Tj3 were obtained by isolation and purification from mycorrhiza of wild Dendrobium officinale and inoculated on the root system of Dendrobium officinale for inoculation test. [Result] Under tissue-culture conditions, at early stage, Tj1 strain hadn't shown promotion effect on Dendrobium officinale, Tj2 strain had shown relatively strong promotion effects, and Tj3 strain had promoted the growth of roots; at late stage, Tj1 strain had shown relatively strong promotion effects, Tj2 strain had shown the best inoculation effects and the strongest promotion effects, while Tj3 strain had caused root and seedling rot problems of the plantlets; under outdoor conditions, after inoculation with Tj2 strain, the number of leaves and lateral buds were increased, the growth of lateral root and the increase of plant height were significant, the leaves of Dendrobium officinale plantlets were large and dark green and an obvious root enlargement phenomenon was observed. [Conclusion] The two inoculation methods both indicate that Tj2 strain has relatively strong promotion effects on the growth of Dendrobium officinale roots and shoots, the increase of plant number and plant height, and the germination of new shoots and roots, which proved the effective establishment of symbiotic relationship between Tj2 strain and Dendrobium officinale. Therefore, T2 strain has practical application values on the successful cultivation of Dendrobium officinale plantlets. 展开更多
关键词 Dendrobium officinale mycorrhiza Tissue culture Inoculation
下载PDF
Effect of arbuscular mycorrhiza on the growth of Camptotheca acuminata seedlings 被引量:4
11
作者 赵昕 于涛 +1 位作者 王洋 阎秀峰 《Journal of Forestry Research》 SCIE CAS CSCD 2006年第2期121-123,共3页
Camptotheca acuminata seeds were sown in sterilized sands in the greenhouse in February of 2005. After 90-day growth, seedlings were inoculated with three species of arbuscular mycorrhizal fungi (AMF), Acaulospora m... Camptotheca acuminata seeds were sown in sterilized sands in the greenhouse in February of 2005. After 90-day growth, seedlings were inoculated with three species of arbuscular mycorrhizal fungi (AMF), Acaulospora mellea, Glomus diaphanum and Sclerocystis sinuosa.. The height, biomass, and absorptions of nitrogen and phosphorus of C. acuminata seedlings inoculated with AMF were investigated. The results showed that the formation of AM promoted the height growth and biomass accumulation of seedlings significantly and improved the absorption of phosphorus in seedlings. The height and biomass of mycorrhizal seedlings were 1.2 and 1.6 times higher than those of the non-mycorrhizal seedlings. The absorption of nitrogen was less influenced by the formation of AM. The nitrogen content in mycorrhizal seedling was equal to that of non-mycorrhizal seedlings. Compared with non-mycorrhizal seedlings, the nitrogen content of mycorrhizal seedlings inoculated with A. mellea changed considerably in the root, stem and leaves. The difference in nitrogen content was not significant between mycorrhizal seedlings inoculated with G. diaphanum and S. sinuosa. The AM formation stimulated the absorption of phosphorus, especially in roots, and also changed the allocation of nitrogen and phosphorus in different organs of seedlings. Compared with non-mycorrhizal seedlings, the ratio of nitrogen and phosphorus in mycorrhizal roots increased, but reduced in stem and leaves. 展开更多
关键词 Arbuscular mycorrhiza (AM) Camptotheca acuminata seedlings BIOMASS Nitrogen and phosphorus contents
下载PDF
Effect of Arbuscular Mycorrhiza on the Content of Nitrogen and Nitrogenous Matter in Amur Corktree Seedlings 被引量:2
12
作者 范继红 高琼 邹原东 《Agricultural Science & Technology》 CAS 2012年第8期1695-1698,共4页
[Objective] This study aimed to explore the effect of arbuscular mycorrhiza on the content of nitrogen and nitrogenous matter in amur corktree(Phellodendron amurense Rupr.)seedlings. [Method] The annual seedlings of... [Objective] This study aimed to explore the effect of arbuscular mycorrhiza on the content of nitrogen and nitrogenous matter in amur corktree(Phellodendron amurense Rupr.)seedlings. [Method] The annual seedlings of Phellodendron amurense Rupr. were inoculated with four arbuscular mycorrhiza fungi in a pot experiment to study the influences of arbuscular mycorrhiza on the content of nitrogen and nitrogenous matter in Phellodendron amurense Rupr. [Result] After inoculation with arbuscular mycorrhiza fungi, the Phellodendron amurense Rupr. seedlings developed arbuscular mycorrhiza, leading to an enhancement of photosynthetic capacity. The leaf nitrogen content of those inoculated with Glomus mosseae increased to 1.28- 1.60 times as compared with the control. The chlorophyll content and chlorophyll a/b ratio were also raised, with an increase over 25% of chlorophyll a content. In addition, IAA content in plants increased to 1.65-2.41 times; and nitrate reductase activity was also enhanced, as well as soluble protein content, 1.67-2.49 times as high as the control, which improved the nitrogen metabolic ability, and promoted the plant growth, as well as the secondary metabolic ability. [Conclusion] This study provides a theoretical basis for the application of arbuscular mycorrhiza on Phellodendron amurense Rupr. 展开更多
关键词 Arbuscular mycorrhiza Phellodendron amurense Rupr. NITROGEN Nitrogenous matter CONTENT
下载PDF
Research Progress on the Process and Mechanism of Arbuscular Mycorrhizal Fungi Colonizing Roots 被引量:1
13
作者 岳辉 刘英 《Agricultural Science & Technology》 CAS 2016年第2期433-437,共5页
The arbuscular mycorrhiza (AM) is a kind of fungi-plant associated sym- biont formed by the arbuscular mycorrhizal fungi and plants in soil. Present study was limited to the population and community level, mainly in... The arbuscular mycorrhiza (AM) is a kind of fungi-plant associated sym- biont formed by the arbuscular mycorrhizal fungi and plants in soil. Present study was limited to the population and community level, mainly in horticulture, land recla- mation, forest and environmental restoration. Research progress was also made at the cellular level and molecular level. Process and related mechanism of mycorrhizal fungi infecting root were reviewed, and future study on the mechanism of arbuscular mycorrhizal fungi infecting root should be continued. 展开更多
关键词 Arbuscular mycorrhiza fungi Colonizing root MECHANISM
下载PDF
Arsenic uptake by arbuscular mycorrhizal maize (Zea mays L.) grown in an arsenic-contaminated soil with added phosphorus 被引量:19
14
作者 XIA Yun-sheng CHEN Bao-dong +3 位作者 CHRISTIE Peter SMITH F Andrew WANG You-shan LI Xiao-lin 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2007年第10期1245-1251,共7页
The effects of arbuscular mycorrhizal (AM) fungus (Glomus mosseae) and phosphorus (P) addition (100 mg/kg soil) on arsenic (As) uptake by maize plants (Zea mays L.) from an As-contaminated soil were examin... The effects of arbuscular mycorrhizal (AM) fungus (Glomus mosseae) and phosphorus (P) addition (100 mg/kg soil) on arsenic (As) uptake by maize plants (Zea mays L.) from an As-contaminated soil were examined in a glasshouse experiment. Non-mycorrhizal and zero-P addition controls were included. Plant biomass and concentrations and uptake of As, P, and other nutrients, AM colonization, root lengths, and hyphal length densities were determined. The results indicated that addition of P significantly inhibited root colonization and development of extraradical mycelium. Root length and dry weight both increased markedly with mycorrhizal colonization under the zero-P treatments, but shoot and root biomass of AM plants was depressed by P application. AM fungal inoculation decreased shoot As concentrations when no P was added, and shoot and root As concentrations of AM plants increased 2.6 and 1.4 times with P addition, respectively. Shoot and root uptake of P, Mn, Cu, and Zn increased, but shoot Fe uptake decreased by 44.6%, with inoculation, when P was added. P addition reduced shoot P, Fe, Mn, Cu, and Zn uptake of AM plants, but increased root Fe and Mn uptake of the nonmycorrhizal ones. AM colonization therefore appeared to enhance plant tolerance to As in low P soil, and have some potential for the phytostabilization of As-contaminated soil, however, P application may introduce additional environmental risk by increasing soil As mobility. 展开更多
关键词 ARSENIC arbuscular mycorrhiza PHOSPHATE MAIZE PHYTOSTABILIZATION
下载PDF
The role of arbuscular mycorrhiza on change of heavy metal speciation in rhizosphere of maize in wastewater irrigated agriculture soil 被引量:9
15
作者 HUANGYi TAOShu CHENYou-jian 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2005年第2期276-280,共5页
To understand the roles of mycorrhiza in metal speciation in the rhizosphere and the impact on increasing host plant tolerance against excessive heavy metals in soil, maize(Zea mays L.) inoculated with arbuscular myco... To understand the roles of mycorrhiza in metal speciation in the rhizosphere and the impact on increasing host plant tolerance against excessive heavy metals in soil, maize(Zea mays L.) inoculated with arbuscular mycorrhizal fungus(Glomus mosseae) was cultivated in heavy metal contaminated soil. Speciations of copper, zinc and lead in the soil were analyzed with the technique of sequential extraction. The results showed that,in comparison to the bolked soil, the exchangeable copper increased from 26% to 43% in non-infected and AM-infected rhizoshpere respectively; while other speciation (organic, carbonate and Fe-Mn oxide copper) remained constant and the organic bound zinc and lead also increased but the exchangeable zinc and lead were undetectable. The organic bound copper, zinc and lead were higher by 15%, 40% and 20%, respectively, in the rhizosphere of arbuscular mycorrhiza infected maize in comparison to the non-infected maize. The results might indicate that mycorrhiza could protect its host plants from the phytotoxicity of excessive copper, zinc and lead by changing the speciation from bio-available to the non-bio-available form. The fact that copper and zinc accumulation in the roots and shoots of mycorrhia infected plants were significantly lower than those in the non-infected plants might also suggest that mycorrhiza efficiently restricted excessive copper and zinc absorptions into the host plants. Compared to the non-infected seedlings, the lead content of infected seedlings was 60% higher in shoots. This might illustrate that mycorrhiza have a different mechanism for protecting its host from excessive lead phytotoxicity by chelating lead in the shoots. 展开更多
关键词 heavy metal speciation arbuscular mycorrhiza Glomus mosseae RHIZOSPHERE
下载PDF
Interacted Effect of Arbuscular Mycorrhizal Fungi and Polyamines on Root System Architecture of Citrus Seedlings 被引量:3
16
作者 WU Qiang-sheng ZOU Ying-ning +1 位作者 LIU Chun-yan LU Ting 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2012年第10期1675-1681,共7页
Either arbuscular mycorrhizal fungi (AMF) or polyamines (PAs) may change root system architecture (RSA) of plants, whereas the interaction of AMF and PAs on RSA remains unclear. In the present study, we studied ... Either arbuscular mycorrhizal fungi (AMF) or polyamines (PAs) may change root system architecture (RSA) of plants, whereas the interaction of AMF and PAs on RSA remains unclear. In the present study, we studied the interaction between AMF (Paraglomus occultum) and exogenous PAs, including putrescine (Put), spermidine (Spd) and spermine (Spin) on mycorrhizal development of different parts of root system, plant growth, RSA and carbohydrate concentrations of 6-m-old citrus (Citrus tangerine Hort. ex Tanaka) seedlings. After 14 wk of PAs application, PA-treated mycorrhizal seedlings exhibited better mycorrhizal colonization and numbers of vesicles, arbuscules, and entry points, and the best mycorrhizal status of taproot, first-, second-, and third-order lateral roots was respectively found in mycorrhizal seedlings supplied with Put, Spd and Spm, suggesting that PAs might act as a regulated factor of mycorrhizal development through transformation of root sucrose more into glucose for sustaining mycorrhizal development. AMF usually notably increases RSA traits (taproot length, total length, average diameter, projected area, surface area, volume, and number of first-, second-, and third-order lateral roots) of only PA-treated seedlings. Among the three PA species, greater positive effects on RSA change and plant biomass increment of the seedlings generally rank as Spd〉Spm〉Put, irrespective of whether or not AMF colonization. PAs significantly changed the RSA traits in mycorrhizal but not in non-mycorrhizal seedlings. It suggests that the application of PAs (especially Spd) to AMF plants would optimize RSA of citrus seedlings, thus increasing plant growth (shoot and root dry weight). 展开更多
关键词 CITRUS lateral root mycorrhiza PUTRESCINE root system architecture SPERMIDINE SPERMINE
下载PDF
Tolerance of VA Mycorrhizal Fungi to Soil Acidity 被引量:10
17
作者 LIN XIANGUI, WANG SHUGUANG and SHI YAQIN Institute of Soil Science, the Chinese Academy of Soil Sciences, Nanjing 210008 (China) 《Pedosphere》 SCIE CAS CSCD 2001年第2期105-113,共9页
A 45-day greenhouse experiment was carried out to determine effect of vesicular-arbuscular (VA) mycorrhizal fungi on colonization rate, plant height, plant growth, hyphae length, total Al in the plants, exchangeable A... A 45-day greenhouse experiment was carried out to determine effect of vesicular-arbuscular (VA) mycorrhizal fungi on colonization rate, plant height, plant growth, hyphae length, total Al in the plants, exchangeable Al in the soil and soil pH by comparison at soil pH 3.5, 4.5 and 6.0. Plant mung bean (Phaseolus radiatus L.) and crotalaria (Crotalaria mucronata Desv.) were grown with and without VA mycorrhizal fungi in pots with red soil. Ten VA mycorrhizal fungi strains were tested, including Glomus epigaeum (No. 90001), Glomus caledonium (No. 90036), Glomus mosseae (No. 90107), Acaulospora spp. (No. 34), Scutellospora heterogama (No. 36), Scutellospora calospora (No. 37), Glomus manihotis (No. 38), Gigaspora spp. (No. 47), Glomus manihotis (No. 49), and Acaulospora spp. (No. 53). Being the most tolerant to acidity, strain 34 and strain 38 showed quicker and higher-rated colonization without lagging, three to four times more in number of nodules, two to four times more in plant dry weight, 30% to 60% more in hyphae length, lower soil exchangeable Al, and higher soil pH than without VA mycorrhizal fungi (CK). Other strains also could improve plant growth and enhance plant tolerance to acidity, but their effects were not marked. This indicated that VA mycorrhizal fungi differed in the tolerance to soil acidity and so did their inoculation effects. In the experiment, acidic soil could be remedied by inoculation of promising VA mycorrhizal fungi tolerant of acidity. 展开更多
关键词 ACIDITY CROTALARIA mung bean mycorrhiza STRAIN
下载PDF
Role of mycorrhiza to reduce heavy metal stress 被引量:4
18
作者 Syeda Asma Bano Darima Ashfaq 《Natural Science》 2013年第12期16-20,共5页
Plants have a system of antioxidant enzymes, which helps to alleviate the effects of various types of stresses. Heavy metals like Cadmium and lead are tolerable for plants to certain extent. The antioxidant enzymes do... Plants have a system of antioxidant enzymes, which helps to alleviate the effects of various types of stresses. Heavy metals like Cadmium and lead are tolerable for plants to certain extent. The antioxidant enzymes do not function properly at higher concentrations of Cadmium, lead and some other heavy metals. The activities of antioxidant enzymes are reduced due to reactive oxygen species produced as a result of heavy metal stress. The catalase activity was directly inhibited by O2- (Kono and Fridovich, 1982). These ROS are O2-, H2O2, and -OH which can react with many other biomolecules. Several metallic ions are produced by radical displacement reactions. These metallic ions inhibit the activity of antioxidant enzymes. Hence, enzymic antioxidant defense system of plants is affected and adversely inhibits plant growth and productivity. Mycorrhizal fungi are important in phytostabilization of toxic heavy metals. Plants having mycorrhizal association accumulate metallic pollutants by storing these heavy metals in Vesicles as well as in fungal hyphae in their roots, hence these metallic pollutants are immobilized and do not inhibit the growth and uptake of phosphorus and some other micronutrients. Mycorrhizal fungi also release various organic acids which increase the solubilisation of insoluble phosphate compounds present in soil. The unavailable forms of phosphorus are converted into available forms as a result of organic acids produced by fungi. AM fungi release glomalins that are certain metal sorble glycoproteins which increase the immobilization of toxic metals. Another protein is metallothionine released by certain AM fungi, which also reduces the heavy metal toxicity in soil. Mycorrhizal fungi also induce resistance in plants against pathogens, drought and salinity stress. Investigation on heavy metal stress resistant genes in mycorrhizal plants can be very helpful for phytoremediation. This review focuses on the use of AM fungi for phytoremediation. 展开更多
关键词 mycorrhiza HEAVY Metal Stress PHYTOREMEDIATION AM FUNGI ANTIOXIDANT ENZYMES
下载PDF
Effect of Humic Acid, Mycorrhiza Inoculation, and Biochar on Yield and Water Use Efficiency of Flax under Newly Reclaimed Sandy Soil 被引量:4
19
作者 Bakry Ahmed Bakry Omar Maghawry Ibrahim +1 位作者 Abdelraouf Ramadan Eid Elham Abdelmoneim Badr 《Agricultural Sciences》 2014年第14期1427-1432,共6页
In order to examine the application of different soil and foliar organic fertilizers as well as biofertilizing flax under sandy soil conditions, two field experiments were carried out at the Research and Production St... In order to examine the application of different soil and foliar organic fertilizers as well as biofertilizing flax under sandy soil conditions, two field experiments were carried out at the Research and Production Station of the National Research Centre (NRC), Al Nubaria district, El-Behaira Governorate, Egypt during 2012/2013 and 2013/2014 winter seasons. The trials aimed to study the effect of humic acid (HA) as low cost natural fertilizer, inoculation with mycorrhiza, and biocharcoal on on yield, quality and water use efficiency of flax variety (Amon) under newly reclaimed sandy soil. The treatments consisted of HA (25 kg/feddan), inoculation with mycorrhiza (1 kg/ feddan), and biochar (4 tons/feddan) and all the combinations among the treatments. Results showed that the treatment combination of (humic acid + mycorrhiza + biochar) was significantly superior compared to all the other treatments in number of capsules/plant, biological yield/plant (g), seed yield/plant (g), seed yield (kg/feddan), straw yield (tons/feddan), oil percent (%), and oil yield (kg/feddan). However, it gave the highest fruiting zone length (cm) but not significantly different from (mycorrhiza + biochar) and (humic acid + biochar), also it gave the highest seed index (g) but not significantly different from humic acid and (humic acid + mycorrhiza). The treatment combination of (humic acid + biochar) gave the highest plant height (cm), technical stem length (cm), and number of branches/plant. 展开更多
关键词 FLAX HUMIC Acid BIOCHAR mycorrhiza Water Use Efficiency
下载PDF
Effect of Arbuscular Mycorrhizal Inoculation on Plant Growth and Phthalic Ester Degradation in Two Contaminated Soils 被引量:8
20
作者 CHENRui-Rui YINRui LINXian-Gui CAOZhi-Hong 《Pedosphere》 SCIE CAS CSCD 2005年第2期263-269,共7页
A 60-day pot experiment was carried out using di-(2-ethylhexyl) phthalate (DEHP) as a typical organic pollutant phthalic ester and cowpea (Vigna sinensis) as the host plant to determine the effect of arbuscular mycorr... A 60-day pot experiment was carried out using di-(2-ethylhexyl) phthalate (DEHP) as a typical organic pollutant phthalic ester and cowpea (Vigna sinensis) as the host plant to determine the effect of arbuscular mycorrhizal inoculation on plant growth and degradation of DEHP in two contaminated soils, a yellow-brown soil and a red soil. The air-dried soils were uniformly sprayed with different concentrations of DEHP, inoculated or left uninoculated with an arbuscular mycorrhizal (AM) fungus, and planted with… 展开更多
关键词 arbuscular mycorrhizae phthalic ester degradation plant growth soil pollution
下载PDF
上一页 1 2 51 下一页 到第
使用帮助 返回顶部