BACKGROUND: Translocation or transplantation of nerve stem has good effect; however, nervous function of donator is completely lost. If some nerve stem is damaged, sensory tracts are intercepted from the near nerve s...BACKGROUND: Translocation or transplantation of nerve stem has good effect; however, nervous function of donator is completely lost. If some nerve stem is damaged, sensory tracts are intercepted from the near nerve stem by nutrient vessels to regard as neural graft for transferring and bridging which may repair injured nerve and decrease neural functional loss of donator. OBJECTIVE: To observe anatomical peculiarities on sensory tracts of wrist median nerve pedicled with nutrient vessels transferring to bridge wrist ulnar nerve defect, and to investigate its feasibility. DESIGN:Duplicated and measured design.SETTING : Anatomy Department of Medical College affiliated to Nanhua University.MATERIALS: A total of 14 samples of upper limbs were selected from adult unnamed corpse and volunteers.METHODS: The experiment was completed at the Clinical Application Anatomy Laboratory of Medical College affiliated to Nanhua University from September to November 2005. Samples were perfused with red emulsion through artery to observe length, fibrous bands and blood supply of median nerve and ulnar nerve at wrist. Boundary of median nerve at wrist ranged from superficial site between flexor carpi radialis and palmaris Iongus to branch of common palmar digital nerves. Ulnar nerve at wrist ranged from branch of back of the hand to site of common palmar digital nerves. Proximal boundary of the two nerves was crossed from 1/8 to 2/8 region of forearm. Samples of upper limbs from 1 case were selected to simulate operation on sensory tracts of wrist median nerve pedicled with nutrient vessels transferring to bridge wrist ulnar nerve. MAIN OUTCOME MEASURES: Anatomical peculiarities on sensory tracts of wrist median nerve pedicled with nutrient vessels transferring to bridge wrist ulnar nerve defect. RESULTS: ① The length of wrist median nerves was 7.8 (7.5-8.1) cm. There were 19 to 27 nerve tracts in it and the majority belonged to sensory tracts on the ulnar side, in which non-damaged separated length was about 10.0 cm to 14.0 cm. The third, second and first tracts of cutaneous branches at digital interspace and radialis of thumb arrayed from ulnaris to radialis by turns, and numbers of bands were 6.9, 7.4 and 7.2, respectively. The bands in total were 21.6. Cutaneous branches of palm entered from lateral margin of radialis and were completely separated at wrist. Two-thirds of ulnaris at nerve stem, i.e. the third, second and first tracts of cutaneous branches at digital interspace, were separated, which had little effect on sensation in distribution of median nerve. ② Its nutrient vessels originated from radial arteries about 6.2 (6.1-6.6) cm above radial styloid process were 1.2 (1.1-1.4) mm in outer diameter. The length was 5.7 (5.1-6.1) cm.③ The length of wrist ulnar nerve were 9.4 (8.9-9.7) cm and the number of nervous tract were 14 to 19, in which sensory tracts on the anterior external side were approximately equal to motor and mixed tracts on the posterior internal side in quantity. Sensory tracts were located at radialis of palm and motor tracts were located at ulnaris of back. CONCLUSION :① Character and position of median nerve fibre bundle are clear, and length of non-damage separation of sensory tracts is coincidence with the request of transferring to bridge. ② Summation of the third, second and first tracts of cutaneous branches at digital interspace may be satisfactory to bridge of ulnar nerve at wrist (14-19 bands). ③ This technique has little effect on sensation in distribution of median nerve. Nutrient artery of median nerve locates constantly; journey table is superficial and is easily to find out; caliber of arterial canal is thick; blood supply is plentiful; length of pedicel is suitable for translocation. The sensery tracts of wrist median nerve pedicled with nutrient vessels can be applied as nervous grafts to join injured gap in wrist ulnar nerve.展开更多
To explore lower rotating potint nutrient vessels of sural nerve flap with distant pedicled repairing the soft tissue defect of foot and ankle.Methods Lay a foundation of anatomic studying from february 2003 to March ...To explore lower rotating potint nutrient vessels of sural nerve flap with distant pedicled repairing the soft tissue defect of foot and ankle.Methods Lay a foundation of anatomic studying from february 2003 to March 2004,using lower rotating point nutrient vessels of sural nerve flap with distant pedicled repairing the soft tissue defect of foot and ankle in 11 cases.Cause of injuring:traffic accident 7 cases,crushing 1 case,saw injury 1 case,skin cancer 1 case,chronic ulcer 1 case.Areas:foot heel 6 cases,shank lower section 2 cases,heel tendon 2 cases,the distant back of the foot 1 case.Using the flap axis point was 1~3 cm above the pin of the external heel,average 2 cm.The scope of the flap was 6.0 cm×8.0 cm~12.0 cm~18.0 cm.Results All sural nerve flaps were alive.Of them,2 cases have distant part necrosis,accompanying with subcutaneous tissue,1 case heels after change dressings,another heels after skin grafting.All case can walk as usual,the flap was wear-resisting and keenly feel.Conclusion Lower rotating point nutrient vessels of sural nerve flap,donner area was fine,available area was large,skin in the pink,easy grafting,without main blood vessel damage,survival rate high,it is a good donner area in repairing around heel,foot and shank lower section.7 refs,1 tab.展开更多
Objective To introduce an effective reconstruction method for the finger injured with vessel and skin defect. Methods Free skin flap with skin vein was transplanted on the site of tissue defect, connecting by anastomo...Objective To introduce an effective reconstruction method for the finger injured with vessel and skin defect. Methods Free skin flap with skin vein was transplanted on the site of tissue defect, connecting by anastomosis the vein with artery or vein of the finger. Results Seven cases were treated with this method,among which 5 cases have sikin defect on the palm aspect of fingers, the rest have skin defect on the dorsal aspect skin of finger. All fingers survived with good shape and function. Conclusion This is a simple and effective method of finger reconstruction for the patients with defect of vessels and skin. 6 refs.展开更多
文摘BACKGROUND: Translocation or transplantation of nerve stem has good effect; however, nervous function of donator is completely lost. If some nerve stem is damaged, sensory tracts are intercepted from the near nerve stem by nutrient vessels to regard as neural graft for transferring and bridging which may repair injured nerve and decrease neural functional loss of donator. OBJECTIVE: To observe anatomical peculiarities on sensory tracts of wrist median nerve pedicled with nutrient vessels transferring to bridge wrist ulnar nerve defect, and to investigate its feasibility. DESIGN:Duplicated and measured design.SETTING : Anatomy Department of Medical College affiliated to Nanhua University.MATERIALS: A total of 14 samples of upper limbs were selected from adult unnamed corpse and volunteers.METHODS: The experiment was completed at the Clinical Application Anatomy Laboratory of Medical College affiliated to Nanhua University from September to November 2005. Samples were perfused with red emulsion through artery to observe length, fibrous bands and blood supply of median nerve and ulnar nerve at wrist. Boundary of median nerve at wrist ranged from superficial site between flexor carpi radialis and palmaris Iongus to branch of common palmar digital nerves. Ulnar nerve at wrist ranged from branch of back of the hand to site of common palmar digital nerves. Proximal boundary of the two nerves was crossed from 1/8 to 2/8 region of forearm. Samples of upper limbs from 1 case were selected to simulate operation on sensory tracts of wrist median nerve pedicled with nutrient vessels transferring to bridge wrist ulnar nerve. MAIN OUTCOME MEASURES: Anatomical peculiarities on sensory tracts of wrist median nerve pedicled with nutrient vessels transferring to bridge wrist ulnar nerve defect. RESULTS: ① The length of wrist median nerves was 7.8 (7.5-8.1) cm. There were 19 to 27 nerve tracts in it and the majority belonged to sensory tracts on the ulnar side, in which non-damaged separated length was about 10.0 cm to 14.0 cm. The third, second and first tracts of cutaneous branches at digital interspace and radialis of thumb arrayed from ulnaris to radialis by turns, and numbers of bands were 6.9, 7.4 and 7.2, respectively. The bands in total were 21.6. Cutaneous branches of palm entered from lateral margin of radialis and were completely separated at wrist. Two-thirds of ulnaris at nerve stem, i.e. the third, second and first tracts of cutaneous branches at digital interspace, were separated, which had little effect on sensation in distribution of median nerve. ② Its nutrient vessels originated from radial arteries about 6.2 (6.1-6.6) cm above radial styloid process were 1.2 (1.1-1.4) mm in outer diameter. The length was 5.7 (5.1-6.1) cm.③ The length of wrist ulnar nerve were 9.4 (8.9-9.7) cm and the number of nervous tract were 14 to 19, in which sensory tracts on the anterior external side were approximately equal to motor and mixed tracts on the posterior internal side in quantity. Sensory tracts were located at radialis of palm and motor tracts were located at ulnaris of back. CONCLUSION :① Character and position of median nerve fibre bundle are clear, and length of non-damage separation of sensory tracts is coincidence with the request of transferring to bridge. ② Summation of the third, second and first tracts of cutaneous branches at digital interspace may be satisfactory to bridge of ulnar nerve at wrist (14-19 bands). ③ This technique has little effect on sensation in distribution of median nerve. Nutrient artery of median nerve locates constantly; journey table is superficial and is easily to find out; caliber of arterial canal is thick; blood supply is plentiful; length of pedicel is suitable for translocation. The sensery tracts of wrist median nerve pedicled with nutrient vessels can be applied as nervous grafts to join injured gap in wrist ulnar nerve.
文摘To explore lower rotating potint nutrient vessels of sural nerve flap with distant pedicled repairing the soft tissue defect of foot and ankle.Methods Lay a foundation of anatomic studying from february 2003 to March 2004,using lower rotating point nutrient vessels of sural nerve flap with distant pedicled repairing the soft tissue defect of foot and ankle in 11 cases.Cause of injuring:traffic accident 7 cases,crushing 1 case,saw injury 1 case,skin cancer 1 case,chronic ulcer 1 case.Areas:foot heel 6 cases,shank lower section 2 cases,heel tendon 2 cases,the distant back of the foot 1 case.Using the flap axis point was 1~3 cm above the pin of the external heel,average 2 cm.The scope of the flap was 6.0 cm×8.0 cm~12.0 cm~18.0 cm.Results All sural nerve flaps were alive.Of them,2 cases have distant part necrosis,accompanying with subcutaneous tissue,1 case heels after change dressings,another heels after skin grafting.All case can walk as usual,the flap was wear-resisting and keenly feel.Conclusion Lower rotating point nutrient vessels of sural nerve flap,donner area was fine,available area was large,skin in the pink,easy grafting,without main blood vessel damage,survival rate high,it is a good donner area in repairing around heel,foot and shank lower section.7 refs,1 tab.
文摘Objective To introduce an effective reconstruction method for the finger injured with vessel and skin defect. Methods Free skin flap with skin vein was transplanted on the site of tissue defect, connecting by anastomosis the vein with artery or vein of the finger. Results Seven cases were treated with this method,among which 5 cases have sikin defect on the palm aspect of fingers, the rest have skin defect on the dorsal aspect skin of finger. All fingers survived with good shape and function. Conclusion This is a simple and effective method of finger reconstruction for the patients with defect of vessels and skin. 6 refs.