With the ongoing advancements in sensor networks and data acquisition technologies across various systems like manufacturing,aviation,and healthcare,the data driven vibration control(DDVC)has attracted broad interests...With the ongoing advancements in sensor networks and data acquisition technologies across various systems like manufacturing,aviation,and healthcare,the data driven vibration control(DDVC)has attracted broad interests from both the industrial and academic communities.Input shaping(IS),as a simple and effective feedforward method,is greatly demanded in DDVC methods.It convolves the desired input command with impulse sequence without requiring parametric dynamics and the closed-loop system structure,thereby suppressing the residual vibration separately.Based on a thorough investigation into the state-of-the-art DDVC methods,this survey has made the following efforts:1)Introducing the IS theory and typical input shapers;2)Categorizing recent progress of DDVC methods;3)Summarizing commonly adopted metrics for DDVC;and 4)Discussing the engineering applications and future trends of DDVC.By doing so,this study provides a systematic and comprehensive overview of existing DDVC methods from designing to optimizing perspectives,aiming at promoting future research regarding this emerging and vital issue.展开更多
For random vibration of airborne platform, the accurate evaluation is a key indicator to ensure normal operation of airborne equipment in flight. However, only limited power spectral density(PSD) data can be obtaine...For random vibration of airborne platform, the accurate evaluation is a key indicator to ensure normal operation of airborne equipment in flight. However, only limited power spectral density(PSD) data can be obtained at the stage of flight test. Thus, those conventional evaluation methods cannot be employed when the distribution characteristics and priori information are unknown. In this paper, the fuzzy norm method(FNM) is proposed which combines the advantages of fuzzy theory and norm theory. The proposed method can deeply dig system information from limited data, which probability distribution is not taken into account. Firstly, the FNM is employed to evaluate variable interval and expanded uncertainty from limited PSD data, and the performance of FNM is demonstrated by confidence level, reliability and computing accuracy of expanded uncertainty. In addition, the optimal fuzzy parameters are discussed to meet the requirements of aviation standards and metrological practice. Finally, computer simulation is used to prove the adaptability of FNM. Compared with statistical methods, FNM has superiority for evaluating expanded uncertainty from limited data. The results show that the reliability of calculation and evaluation is superior to 95%.展开更多
基金supported by the National Natural Science Foundation of China (62272078)。
文摘With the ongoing advancements in sensor networks and data acquisition technologies across various systems like manufacturing,aviation,and healthcare,the data driven vibration control(DDVC)has attracted broad interests from both the industrial and academic communities.Input shaping(IS),as a simple and effective feedforward method,is greatly demanded in DDVC methods.It convolves the desired input command with impulse sequence without requiring parametric dynamics and the closed-loop system structure,thereby suppressing the residual vibration separately.Based on a thorough investigation into the state-of-the-art DDVC methods,this survey has made the following efforts:1)Introducing the IS theory and typical input shapers;2)Categorizing recent progress of DDVC methods;3)Summarizing commonly adopted metrics for DDVC;and 4)Discussing the engineering applications and future trends of DDVC.By doing so,this study provides a systematic and comprehensive overview of existing DDVC methods from designing to optimizing perspectives,aiming at promoting future research regarding this emerging and vital issue.
基金supported by Aeronautical Science Foundation of China (No. 20100251006)Technological Foundation Project of China (No. J132012C001)
文摘For random vibration of airborne platform, the accurate evaluation is a key indicator to ensure normal operation of airborne equipment in flight. However, only limited power spectral density(PSD) data can be obtained at the stage of flight test. Thus, those conventional evaluation methods cannot be employed when the distribution characteristics and priori information are unknown. In this paper, the fuzzy norm method(FNM) is proposed which combines the advantages of fuzzy theory and norm theory. The proposed method can deeply dig system information from limited data, which probability distribution is not taken into account. Firstly, the FNM is employed to evaluate variable interval and expanded uncertainty from limited PSD data, and the performance of FNM is demonstrated by confidence level, reliability and computing accuracy of expanded uncertainty. In addition, the optimal fuzzy parameters are discussed to meet the requirements of aviation standards and metrological practice. Finally, computer simulation is used to prove the adaptability of FNM. Compared with statistical methods, FNM has superiority for evaluating expanded uncertainty from limited data. The results show that the reliability of calculation and evaluation is superior to 95%.