We apply the strong-field Lewenstein model to demonstrate the high-order harmonic generation of CO2 with three vibrational modes(balance vibration,bending vibration,and stretching vibration) driven by an intense las...We apply the strong-field Lewenstein model to demonstrate the high-order harmonic generation of CO2 with three vibrational modes(balance vibration,bending vibration,and stretching vibration) driven by an intense laser field.The results show that the intensity of harmonic spectra is sensitive to molecular vibrational modes,and the high harmonic efficiency with stretching vibrational mode is the strongest.The underlying physical mechanism of the harmonic emission can be well explained by the corresponding ionization yield and the time-frequency analysis.Finally,we demonstrate the attosecond pulse generation with different vibrational modes and an isolated attosecond pulse with a duration of about 112 as is generated.展开更多
The controlled and homogeneous flow of dry granular powders through hoppers is essential for applications,namely,packaging of food grains,fertilizers and additive manufacturing processes such as directed energy deposi...The controlled and homogeneous flow of dry granular powders through hoppers is essential for applications,namely,packaging of food grains,fertilizers and additive manufacturing processes such as directed energy deposition for better product quality.One of the major issues encountered in the granular flows through hoppers is flow stagnation due to the well-known arching phenomenon.Vibration-assisted granular flow through hoppers is one of the mechanisms used for better mass flow control.In this work,the influence of external mechanical vibration on the powder flow is investigated experimentally and using discrete element simulations.First,the mass flow rate through the hopper increases with an increase in vibration amplitude and then decreases,signifying the existence of an optimal amplitude of vibration.The DEM simulations explained the underlying mechanisms for the existence of an optimal amplitude of vibration corresponding to the maximum mass flow rate.A range of vibration amplitudes from 0 mm to 3.5 mm is used to study the flow behaviour;the maximum flow of around 33 g/s to 35 g/s is observed for 0.75 mm to 1.25 mm vibration amplitude for the hopper-particle combination studied in this work.The work also reports the influence of vibration frequency,hopper,and particle dimension on the flow characteristics.The research facilitates the effective use of mechanical vibration to enhance powder flow that can further be extended to non-spherical and multi-material particles.展开更多
Offshore structures are subject to environmental loads such as waves,currents,or wind,which may induce cyclic lateral vibration at the foundations.These cyclic vibration loadings may affect the rheological property of...Offshore structures are subject to environmental loads such as waves,currents,or wind,which may induce cyclic lateral vibration at the foundations.These cyclic vibration loadings may affect the rheological property of the sediments adjacent to the foundation and the stability of the structures.This is especially true when the structures are founded on cohesive sedimentary bed.In this study,the viscosity of soft cohesive sediments adjacent to a vibrating pillar was considered,and as a primary index of the rheological characteristics of the sediments.The investigation was performed using the sinking ball method.The experimental findings indicated that the viscosity of cohesive sediments decrease with increase of the liquidity index and vibration intensity.A simple semi-empirical formula was proposed.The structures of the cohesive sediments were destroyed due to the mechanical vibration,and the sediments were fluidized during vibration loads.The shear strength of the cohesive sediments decreased with increased vibration intensity,not only because of the increased pore water pressure but also the decreased viscosity of cohesive sediments following sediment fluidization.展开更多
Soft failure of mechanical equipment makes its performance drop gradually,which occupies a large proportion and has certain regularity. The performance can be evaluated and predicted through early state monitoring and...Soft failure of mechanical equipment makes its performance drop gradually,which occupies a large proportion and has certain regularity. The performance can be evaluated and predicted through early state monitoring and data analysis. The vibration signal was modeled from the double row bearing,and wavelet transform and support vector machine model( WT-SVM model) was constructed and trained for bearing degradation process prediction. Besides Hazen plotting position relationships was applied to describing the degradation trend distribution and a 95%confidence level based on t-distribution was given. The single SVM model and neural network( NN) approach were also investigated as a comparison. Results indicate that the WT-SVM model outperforms the NN and single SVM models,and is feasible and effective in machinery condition prediction.展开更多
Accidental boiling liquid expansion vapour explosions(BLEVEs)caused by the bursting of liquified petroleum gas(LPG)tank inside a tunnel can induce vibrations of its surrounding geological media and threaten the stabil...Accidental boiling liquid expansion vapour explosions(BLEVEs)caused by the bursting of liquified petroleum gas(LPG)tank inside a tunnel can induce vibrations of its surrounding geological media and threaten the stability of adjacent tunnels and structures.Therefore,it is essential to understand the characteristics of vibrations induced by LPG BLEVEs inside the tunnel for the safety design of its adjacent structures.Owing to the difficulty in effectively predicting the LPG BLEVE loads,the current practice usually employs equivalent methods,e.g.,the TNT-equivalency method,in LPG BLEVE load predictions for structural response analysis,which may lead to inaccurate response predictions.This study compares ground vibrations induced by a BLEVE inside an arched road tunnel with those induced by its equivalent TNT explosion via high-fidelity numerical simulations.The results demonstrate that the frequency of BLEVEinduced vibrations is lower than that induced by the TNT explosion at the same scaled distance.The intensity of LPG BLEVE-induced vibrations at relatively small-scaled distances is lower than that of TNT explosion-induced vibrations at the same scaled distance,but becomes higher after a certain scaled distance because of the relatively low attenuation rate.In addition,parametric analysis is conducted to evaluate the effects of various factors on the characteristics of LPG BLEVE-induced ground vibrations.It is found that the surrounding rock type,the rock porosity,and the cover depth of the tunnel have more significant influences than the concrete grade of the tunnel lining.The recommendation for the tunnel design is also given based on the intensity and frequency characteristics of BLEVE-induced vibrations.展开更多
Continuous seismic observations can record seismic waveforms, and ambient noise, for the purposes of earthquake researches and other applications. Here we deploy three digital seismometers(EPS-2) in and around the Nan...Continuous seismic observations can record seismic waveforms, and ambient noise, for the purposes of earthquake researches and other applications. Here we deploy three digital seismometers(EPS-2) in and around the Nanwangshan Campus of the China University of Geosciences(Wuhan). This network was running from April 9 to May 9 of 2018. During this period, the seismometers recorded the May 4, 2018 M6.9 Hawaii earthquake. From the recorded waveforms, we could observe clearly the P and S arrivals, and the corresponding particle motions. Analysis of continuous observations of ambient noise shows obvious fluctuation of vibration intensity inside of the campus. The campus is quietest from 0 to 5 am. From 5 am on, the vibration intensity increases, and reaches the peak of entire day at 12 am. The amplitude then decreases to a very low level at 19:30 to 20:00 pm, and reaches another strong noisy time at 21:00 to 21:30 pm. After 21:30 pm, the intensity goes down slowly. We also observed seismic signals that were generated by the interaction of speed-control hump cars and ground. By taking the envelope and smooth operations, we observe different characteristics for different car speeds, which suggests that seismic monitoring approaches can be used for speed measurement of cars. This kind of small seismic network running in a real time fashion, would greatly help understanding of the sources of ambient noise at high frequency bands in interested areas. Analysis of a long-term observed dataset, and real time illustration will help to strengthen campus security and high-precision laboratory deployments, and also contribute to research atmosphere in earthquake science.展开更多
People gained limited progress on refinement of super-hard powder using the vibration mill for many years.According to various amplitude–frequency combination working conditions of vibration mill prototype,simulation...People gained limited progress on refinement of super-hard powder using the vibration mill for many years.According to various amplitude–frequency combination working conditions of vibration mill prototype,simulation research on dynamic characteristic of grinding medium flow field based on PFC is proposed in the paper,and a dynamics model of grinding medium flow field in barrel is established.Furthermore,trajectory image of medium flow,kinetic energy and strain energy and collision frequency can be obtained.The simulation analysis shows that collision between media as well as between media and the barrel can cause the changes of kinetic energy and strain energy of grinding medium flow under various amplitude–frequency combination conditions,and an energy-lacking region exists in the barrel.Contrast experiments under various working conditions show that kinetic energy and strain energy of grinding medium flow have large increment and energy-lacking regions become smaller,and then energy consumption decreases on working condition of high-amplitude and middle-frequency.The conclusion has practical value to refine powder by high-intensity vibration mill with certain frequency.展开更多
Many tunnels all over the world have been in service for several decades,which require effective inspection methods to assess their health conditions.Microtremor,as a type of ambient vibration originating from natural...Many tunnels all over the world have been in service for several decades,which require effective inspection methods to assess their health conditions.Microtremor,as a type of ambient vibration originating from natural or artificial oscillations without specific sources,has attracted more and more attentions in the recent study of the microtremor dynamic properties of concrete structures.In this study,the microtremors of the tunnel lining were simulated numerically based on the Distinct Element Method(DEM).The Power Spectra Density(PSD)of signals obtained from numerical simulations were calculated and the nature frequencies were identified using the peak-picking method.The influences of the rock-concrete joint,the rock type and the concrete type on the nature frequencies were also evaluated.The results of a comprehensive numerical analysis show that the nature frequencies lower than 100 Hz can be identified.As the bonding condition becomes worse,the nature frequencies decrease.The nature frequencies change proportionally with the normal stiffness of the rock-concrete joint.As the concrete grade decreases,the third mode of frequency also decreases gradually while the variation of the first two modes of frequencies can hardly be identified.Additionally,the field microtremor measurements of tunnel lining were also carried out to verify the numerical results.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61575077,11271158,and 11574117)
文摘We apply the strong-field Lewenstein model to demonstrate the high-order harmonic generation of CO2 with three vibrational modes(balance vibration,bending vibration,and stretching vibration) driven by an intense laser field.The results show that the intensity of harmonic spectra is sensitive to molecular vibrational modes,and the high harmonic efficiency with stretching vibrational mode is the strongest.The underlying physical mechanism of the harmonic emission can be well explained by the corresponding ionization yield and the time-frequency analysis.Finally,we demonstrate the attosecond pulse generation with different vibrational modes and an isolated attosecond pulse with a duration of about 112 as is generated.
文摘The controlled and homogeneous flow of dry granular powders through hoppers is essential for applications,namely,packaging of food grains,fertilizers and additive manufacturing processes such as directed energy deposition for better product quality.One of the major issues encountered in the granular flows through hoppers is flow stagnation due to the well-known arching phenomenon.Vibration-assisted granular flow through hoppers is one of the mechanisms used for better mass flow control.In this work,the influence of external mechanical vibration on the powder flow is investigated experimentally and using discrete element simulations.First,the mass flow rate through the hopper increases with an increase in vibration amplitude and then decreases,signifying the existence of an optimal amplitude of vibration.The DEM simulations explained the underlying mechanisms for the existence of an optimal amplitude of vibration corresponding to the maximum mass flow rate.A range of vibration amplitudes from 0 mm to 3.5 mm is used to study the flow behaviour;the maximum flow of around 33 g/s to 35 g/s is observed for 0.75 mm to 1.25 mm vibration amplitude for the hopper-particle combination studied in this work.The work also reports the influence of vibration frequency,hopper,and particle dimension on the flow characteristics.The research facilitates the effective use of mechanical vibration to enhance powder flow that can further be extended to non-spherical and multi-material particles.
基金This work was financially supported by the National Natural Science Foundation of China(Grant No.52001206).
文摘Offshore structures are subject to environmental loads such as waves,currents,or wind,which may induce cyclic lateral vibration at the foundations.These cyclic vibration loadings may affect the rheological property of the sediments adjacent to the foundation and the stability of the structures.This is especially true when the structures are founded on cohesive sedimentary bed.In this study,the viscosity of soft cohesive sediments adjacent to a vibrating pillar was considered,and as a primary index of the rheological characteristics of the sediments.The investigation was performed using the sinking ball method.The experimental findings indicated that the viscosity of cohesive sediments decrease with increase of the liquidity index and vibration intensity.A simple semi-empirical formula was proposed.The structures of the cohesive sediments were destroyed due to the mechanical vibration,and the sediments were fluidized during vibration loads.The shear strength of the cohesive sediments decreased with increased vibration intensity,not only because of the increased pore water pressure but also the decreased viscosity of cohesive sediments following sediment fluidization.
基金National Natural Science Foundation of China(No.51205043)the Special Fundamental Research Funds for Central Universities of China(No.DUT14QY21)
文摘Soft failure of mechanical equipment makes its performance drop gradually,which occupies a large proportion and has certain regularity. The performance can be evaluated and predicted through early state monitoring and data analysis. The vibration signal was modeled from the double row bearing,and wavelet transform and support vector machine model( WT-SVM model) was constructed and trained for bearing degradation process prediction. Besides Hazen plotting position relationships was applied to describing the degradation trend distribution and a 95%confidence level based on t-distribution was given. The single SVM model and neural network( NN) approach were also investigated as a comparison. Results indicate that the WT-SVM model outperforms the NN and single SVM models,and is feasible and effective in machinery condition prediction.
文摘Accidental boiling liquid expansion vapour explosions(BLEVEs)caused by the bursting of liquified petroleum gas(LPG)tank inside a tunnel can induce vibrations of its surrounding geological media and threaten the stability of adjacent tunnels and structures.Therefore,it is essential to understand the characteristics of vibrations induced by LPG BLEVEs inside the tunnel for the safety design of its adjacent structures.Owing to the difficulty in effectively predicting the LPG BLEVE loads,the current practice usually employs equivalent methods,e.g.,the TNT-equivalency method,in LPG BLEVE load predictions for structural response analysis,which may lead to inaccurate response predictions.This study compares ground vibrations induced by a BLEVE inside an arched road tunnel with those induced by its equivalent TNT explosion via high-fidelity numerical simulations.The results demonstrate that the frequency of BLEVEinduced vibrations is lower than that induced by the TNT explosion at the same scaled distance.The intensity of LPG BLEVE-induced vibrations at relatively small-scaled distances is lower than that of TNT explosion-induced vibrations at the same scaled distance,but becomes higher after a certain scaled distance because of the relatively low attenuation rate.In addition,parametric analysis is conducted to evaluate the effects of various factors on the characteristics of LPG BLEVE-induced ground vibrations.It is found that the surrounding rock type,the rock porosity,and the cover depth of the tunnel have more significant influences than the concrete grade of the tunnel lining.The recommendation for the tunnel design is also given based on the intensity and frequency characteristics of BLEVE-induced vibrations.
基金the National Key R&D Program of China(No.2018YFC0603500)Programme on Global Change and Air-Sea Interaction(No.GASI-GEOGE-02)+1 种基金NSFC(Nos.41474050,41874062)one of the outcomes of the research projects(No.Q20203004),analysis of campus ambient noise monitored by short-seismometers funded by Scientific Research Foundation of the Education Department of Hubei Province,China。
文摘Continuous seismic observations can record seismic waveforms, and ambient noise, for the purposes of earthquake researches and other applications. Here we deploy three digital seismometers(EPS-2) in and around the Nanwangshan Campus of the China University of Geosciences(Wuhan). This network was running from April 9 to May 9 of 2018. During this period, the seismometers recorded the May 4, 2018 M6.9 Hawaii earthquake. From the recorded waveforms, we could observe clearly the P and S arrivals, and the corresponding particle motions. Analysis of continuous observations of ambient noise shows obvious fluctuation of vibration intensity inside of the campus. The campus is quietest from 0 to 5 am. From 5 am on, the vibration intensity increases, and reaches the peak of entire day at 12 am. The amplitude then decreases to a very low level at 19:30 to 20:00 pm, and reaches another strong noisy time at 21:00 to 21:30 pm. After 21:30 pm, the intensity goes down slowly. We also observed seismic signals that were generated by the interaction of speed-control hump cars and ground. By taking the envelope and smooth operations, we observe different characteristics for different car speeds, which suggests that seismic monitoring approaches can be used for speed measurement of cars. This kind of small seismic network running in a real time fashion, would greatly help understanding of the sources of ambient noise at high frequency bands in interested areas. Analysis of a long-term observed dataset, and real time illustration will help to strengthen campus security and high-precision laboratory deployments, and also contribute to research atmosphere in earthquake science.
基金The authors acknowledge the financial support from National Natural Science Foundation of China(51375221)Natural Science Fund in Jiangsu Province(BK2012865)+2 种基金Scientific and Technological Projects of Zhengzhou City(20130797)college students of Science and Technology Innovation Projects in Jiangsu Province(201411276009Z)Key Scientific and technological projects of Henan(42102210138).
文摘People gained limited progress on refinement of super-hard powder using the vibration mill for many years.According to various amplitude–frequency combination working conditions of vibration mill prototype,simulation research on dynamic characteristic of grinding medium flow field based on PFC is proposed in the paper,and a dynamics model of grinding medium flow field in barrel is established.Furthermore,trajectory image of medium flow,kinetic energy and strain energy and collision frequency can be obtained.The simulation analysis shows that collision between media as well as between media and the barrel can cause the changes of kinetic energy and strain energy of grinding medium flow under various amplitude–frequency combination conditions,and an energy-lacking region exists in the barrel.Contrast experiments under various working conditions show that kinetic energy and strain energy of grinding medium flow have large increment and energy-lacking regions become smaller,and then energy consumption decreases on working condition of high-amplitude and middle-frequency.The conclusion has practical value to refine powder by high-intensity vibration mill with certain frequency.
基金Development of this study is supported by the Civil Engineering Division,Nagasaki Prefectural Government.
文摘Many tunnels all over the world have been in service for several decades,which require effective inspection methods to assess their health conditions.Microtremor,as a type of ambient vibration originating from natural or artificial oscillations without specific sources,has attracted more and more attentions in the recent study of the microtremor dynamic properties of concrete structures.In this study,the microtremors of the tunnel lining were simulated numerically based on the Distinct Element Method(DEM).The Power Spectra Density(PSD)of signals obtained from numerical simulations were calculated and the nature frequencies were identified using the peak-picking method.The influences of the rock-concrete joint,the rock type and the concrete type on the nature frequencies were also evaluated.The results of a comprehensive numerical analysis show that the nature frequencies lower than 100 Hz can be identified.As the bonding condition becomes worse,the nature frequencies decrease.The nature frequencies change proportionally with the normal stiffness of the rock-concrete joint.As the concrete grade decreases,the third mode of frequency also decreases gradually while the variation of the first two modes of frequencies can hardly be identified.Additionally,the field microtremor measurements of tunnel lining were also carried out to verify the numerical results.