期刊文献+
共找到69篇文章
< 1 2 4 >
每页显示 20 50 100
Dynamic analysis of a novel multilink-spring mechanism for vibration isolation and energy harvesting
1
作者 谢佳衡 杨涛 唐介 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第5期366-379,共14页
Due to technical limitations,existing vibration isolation and energy harvesting(VIEH)devices have poor performance at low frequency.This paper proposes a new multilink-spring mechanism(MLSM)that can be used to solve t... Due to technical limitations,existing vibration isolation and energy harvesting(VIEH)devices have poor performance at low frequency.This paper proposes a new multilink-spring mechanism(MLSM)that can be used to solve this problem.The VIEH performance of the MLSM under harmonic excitation and Gaussian white noise was analyzed.It was found that the MLSM has good vibration isolation performance for low-frequency isolation and the frequency band can be widened by adjusting parameters to achieve a higher energy harvesting power.By comparison with two special cases,the results show that the MLSM is basically the same as the other two oscillators in terms of vibration isolation but has better energy harvesting performance under multistable characteristics.The MLSM is expected to reduce the impact of vibration on high-precision sensitive equipment in some special sites such as subways and mines,and at the same time supply power to structural health monitoring devices. 展开更多
关键词 multilink-spring mechanism nonlinear dynamics vibration isolation energy harvester
下载PDF
A Closed-Loop Dynamic Controller for Active Vibration Isolation Working on A Parallel Wheel-Legged Robot
2
作者 Fei Guo Shoukun Wang +1 位作者 Daohe Liu Junzheng Wang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第3期147-160,共14页
Serving the Stewart mechanism as a wheel-legged structure,the most outstanding superiority of the proposed wheel-legged hybrid robot(WLHR)is the active vibration isolation function during rolling on rugged terrain.How... Serving the Stewart mechanism as a wheel-legged structure,the most outstanding superiority of the proposed wheel-legged hybrid robot(WLHR)is the active vibration isolation function during rolling on rugged terrain.However,it is difficult to obtain its precise dynamic model,because of the nonlinearity and uncertainty of the heavy robot.This paper presents a dynamic control framework with a decentralized structure for single wheel-leg,position tracking based on model predictive control(MPC)and adaptive impedance module from inside to outside.Through the Newton-Euler dynamic model of the Stewart mechanism,the controller first creates a predictive model by combining Newton-Raphson iteration of forward kinematic and inverse kinematic calculation of Stewart.The actuating force naturally enables each strut to stretch and retract,thereby realizing six degrees-of-freedom(6-DOFs)position-tracking for Stewart wheel-leg.The adaptive impedance control in the outermost loop adjusts environmental impedance parameters by current position and force feedback of wheel-leg along Z-axis.This adjustment allows the robot to adequately control the desired support force tracking,isolating the robot body from vibration that is generated from unknown terrain.The availability of the proposed control methodology on a physical prototype is demonstrated by tracking a Bezier curve and active vibration isolation while the robot is rolling on decelerate strips.By comparing the proportional and integral(PI)and constant impedance controllers,better performance of the proposed algorithm was operated and evaluated through displacement and force sensors internally-installed in each cylinder,as well as an inertial measurement unit(IMU)mounted on the robot body.The proposed algorithm structure significantly enhances the control accuracy and vibration isolation capacity of parallel wheel-legged robot. 展开更多
关键词 Wheel-legged hybrid robot Adaptive impedance control Model predictive control Stewart mechanism vibration isolation Parallel robot
下载PDF
Vibration Isolation Characteristics of Impedance-balanced Ship Equipment Foundation under Unbalanced Excitation
3
作者 Yuxuan Qin Yinbing Wang +2 位作者 Fuzhen Pang Zhiqi Fu Haichao Li 《Sustainable Marine Structures》 2023年第1期37-47,共11页
A new type of impedance-balanced ship equipment foundation structure based on the principle of impedance balancing using a“discontinuous panel-vibration isolation liquid layer-foundation structure”is proposed to sol... A new type of impedance-balanced ship equipment foundation structure based on the principle of impedance balancing using a“discontinuous panel-vibration isolation liquid layer-foundation structure”is proposed to solve the problem of poor low-frequency vibration isolation of the foundation under unbalanced excitation of shipboard equipment.Based on the finite element method,the influence of characteristic parameters of the foundation panel structure on its vibration reduction characteristics under unbalanced excitation is explored.The results show that the vibration isolation level of the impedance-balanced foundation is 10 dB higher than the traditional foundation in the low-frequency band of 10-500 Hz when subjected to combined excitation of concentrated force and moment.Increasing the thickness of the impedance-balanced foundation panel can enhance the isolation effect.Increasing the number of sub-panels can effectively reduce the vibration response of the foundation panel and enhance the isolation performance of the foundation.The connection stiffness between sub-panels has a small effect on the isolation performance of the foundation. 展开更多
关键词 Ship equipment foundation Impedance-balanced design vibration isolation and reduction methods
下载PDF
A state-of-the-art review on low-frequency nonlinear vibration isolation with electromagnetic mechanisms 被引量:4
4
作者 Bo YAN Ning YU Chuanyu WU 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2022年第7期1045-1062,共18页
Vibration isolation is one of the most efficient approaches to protecting host structures from harmful vibrations,especially in aerospace,mechanical,and architectural engineering,etc.Traditional linear vibration isola... Vibration isolation is one of the most efficient approaches to protecting host structures from harmful vibrations,especially in aerospace,mechanical,and architectural engineering,etc.Traditional linear vibration isolation is hard to meet the requirements of the loading capacity and isolation band simultaneously,which limits further engineering application,especially in the low-frequency range.In recent twenty years,the nonlinear vibration isolation technology has been widely investigated to broaden the vibration isolation band by exploiting beneficial nonlinearities.One of the most widely studied objects is the"three-spring"configured quasi-zero-stiffness(QZS)vibration isolator,which can realize the negative stiffness and high-static-low-dynamic stiffness(HSLDS)characteristics.The nonlinear vibration isolation with QZS can overcome the drawbacks of the linear one to achieve a better broadband vibration isolation performance.Due to the characteristics of fast response,strong stroke,nonlinearities,easy control,and low-cost,the nonlinear vibration with electromagnetic mechanisms has attracted attention.In this review,we focus on the basic theory,design methodology,nonlinear damping mechanism,and active control of electromagnetic QZS vibration isolators.Furthermore,we provide perspectives for further studies with electromagnetic devices to realize high-efficiency vibration isolation. 展开更多
关键词 quasi-zero-stiffness(QZS) nonlinear vibration isolation LOW-FREQUENCY electromagnetic vibration isolation BISTABLE
下载PDF
Active Low-frequency Vertical Vibration Isolation System for Precision Measurements 被引量:5
5
作者 WU Kang LI Gang +1 位作者 HU Hua WANG Lijun 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2017年第1期164-169,共6页
Low-fi'equency vertical vibration isolation systems play important roles in precision measurements to reduce seismic and environmental vibration noise. Several types of active vibration isolation systems have been de... Low-fi'equency vertical vibration isolation systems play important roles in precision measurements to reduce seismic and environmental vibration noise. Several types of active vibration isolation systems have been developed. However, few researches focus on how to optimize the test mass install position in order to improve the vibration transmissibility. An active low-frequency vertical vibration isolation system based on an earlier instrument, the Super Spring, is designed and implemented. The system, which is simple and compact, consists of two stages: a parallelogram-shaped linkage to ensure vertical motion, and a simple spring-mass system. The theoretical analysis of the vibration isolation system is presented, including terms erroneously ignored before. By carefully choosing the mechanical parameters according to the above analysis and using feedback control, the resonance frequency of the system is reduced from 2.3 to 0.03 Hz, a reduction by a factor of more than 75. The vibration isolation system is installed as an inertial reference in an absolute gravimeter, where it improved the scatter of the absolute gravity values by a factor of 5. The experimental results verifies the improved performance of the isolation system, making it particularly suitable for precision experiments. The improved vertical vibration isolation system can be used as a prototype for designing high-performance active vertical isolation systems. An improved theoretical model of this active vibration isolation system with beam-pivot configuration is proposed, providing fundamental guidelines for vibration isolator design and assembling. 展开更多
关键词 vibration isolation VERTICAL low frequency ACTIVE
下载PDF
A hybrid multi-degree-of-freedom vibration isolation platform for spacecrafts by the linear active disturbance rejection control 被引量:5
6
作者 Weichao CHI S.J.MA J.Q.SUN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2020年第5期805-818,共14页
The hybrid vibration isolation, which takes advantages of both the passive and active approaches, has been an important solution for space missions. The objective of this paper is to design a vibration isolation platf... The hybrid vibration isolation, which takes advantages of both the passive and active approaches, has been an important solution for space missions. The objective of this paper is to design a vibration isolation platform for payloads on spacecrafts with the robust, wide bandwidth, and multi-degree-of-freedom(MDOF). The proposed solution is based on a parallel mechanism with six voice-coil motors(VCMs) as the actuators. The linear active disturbance resistance control(LADRC) algorithm is used for the active control. Numerical simulation results show that the vibration isolation platform performs effectively over a wide bandwidth, and the resonance introduced by the passive isolation is eliminated. The system robustness to the uncertainties of the structure is also verified by simulation. 展开更多
关键词 hybrid vibration isolation Stewart platform linear active disturbance rejection control(LADRC) STABILITY ROBUSTNESS
下载PDF
Self-synchronization theory of dual motor driven vibration system with two-stage vibration isolation frame 被引量:4
7
作者 He LI Dan LIU +2 位作者 Lai JIANG Chunyu ZHAO Bangchun WEN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2015年第2期265-278,共14页
This paper studies self-synchronization and stability of a dual-motor driven vibration system with a two-stage vibration isolation frame. Oscillation amplitude of the material box large enough can be ensured on the vi... This paper studies self-synchronization and stability of a dual-motor driven vibration system with a two-stage vibration isolation frame. Oscillation amplitude of the material box large enough can be ensured on the vibration system in order to screen materials. Reduction of the dynamic load transmitted to the foundation can also be achieved for the vibration system. A Lagrange equation is used to set up the motion differential equations of the system, and a dimensionless coupled equation of the eccentric rotors is obtained using a method of modified average small parameter. According to the existence condition of zero solution in the dimensionless coupled equation of the eccentric rotors, the precondition for commencing self-synchronization motion is achieved.The stability condition of self-synchronization is obtained based on the Routh-Hurwitz criterion. The theoretical analysis is validated by simulations and experiments. 展开更多
关键词 SELF-SYNCHRONIZATION vibration system STABILITY vibration isolation
下载PDF
Active Vibration Isolation of Micro-Manufacturing Platform Based on Neural Network 被引量:4
8
作者 ZHANG Chun-liang, MEI De-qing, CHEN Zi-chen (Institute of Production Engineering, Zhejiang University, Hangzhou 310027, China) 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2002年第S1期67-68,共2页
The micromation and precision of the Micro-Electromechanical System demand that its manufacturing, measuring and assembling must work in a micro-manufacturing platform with good ability to isolate vibrations. This pap... The micromation and precision of the Micro-Electromechanical System demand that its manufacturing, measuring and assembling must work in a micro-manufacturing platform with good ability to isolate vibrations. This paper develops a vibration isolation system of micro-manufacturing platform. The brains of many kinds of birds can isolate vibrations well, such as woodpecker’s brain. When a woodpecker pecks the wood at the speed as 1.6 times as the velocity of sound, its brain will tolerate the wallop 1 500 times of the weight of itself without any damage. The isolation mechanics and organic texture of woodpecker’s brain that has good isolation characteristics were studied. A structure model of vibration isolation system for the micro-manufacturing platform is established based on the bionics of the bird’s brain vibration isolation mechanism. In order to isolate effectively the high frequency vibrations from the ground, a rubber layer is used to isolate vibrations passively between the micro-manufacturing platform’s pedestal and the ground. This layer corresponds to the cartilage and muscles in the outer meninges of the bird’s brain. The active vibration isolation technique is adopted to isolate vibrations between the micro-manufacturing platform and the pedestal. Air springs are used as elastic components, which correspond to the interspaces between the outer meninges and the encephala of the bird’s brain. Actuators are made of giant magnetostrictive material, and it corresponds to the nerves and neural muscles linking the meninges and the encephala. The actuators and air springs are arranged vertically in parallel to make use of the giant magnetostrictive actuators effectively. The air springs support almost all weight of the micro-manufacturing platform and the giant magnetostrictive actuators support almost no weight. In order to realize high performance to isolate complex micro-vibration, the control method using a three-layer neural network is presented. This vibration control system takes into account the floor disturbance and the direct disturbance acting on the micro-manufacturing platform. The absolute acceleration of the micro-manufacturing platform is used as the performance index of vibration control. The performance of the control system is tested by numerical simulation. Simulation results show that the active vibration isolation system has good isolation performance against the floor disturbance and the direct disturbance acting on the micro-manufacturing platform in all the frequency range. 展开更多
关键词 micro-manufacturing platform active vibration isolation bionic mechanics neural network
下载PDF
Research and application on three-dimensional seismic and vibration isolation for building 被引量:5
9
作者 魏陆顺 周福霖 +1 位作者 谭平 任珉 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2011年第1期62-66,共5页
This paper presents the study of a three-dimensional(3D) isolation system.Firstly,the authors investigated the effects of an innovative 3D isolator,which was composed of a connecting plate,a rubber pad for vibration i... This paper presents the study of a three-dimensional(3D) isolation system.Firstly,the authors investigated the effects of an innovative 3D isolator,which was composed of a connecting plate,a rubber pad for vibration isolation in the vertical direction and a horizontal rubber bearing for seismic isolation in both horizontal directions.Secondly,the authors designed such a vibration isolation system and installed it underneath two specific residential buildings which were built directly over an existing subway communication hub platform in Beijing.These buildings required good performance vibration and seismic isolation system to reduce the impact from the running of nearby subway trains.Finally,in situ tests were conducted for both the isolated and the non-isolated buildings for the purpose of comparison.The test results showed that the maximum acceleration response level of the isolated superstructure is reduced by 10% as compared to that of the platform.The maximum attenuation of vibration reaches up to 25 dB.The 3D system explored in this paper is very effective in control and suppression of building vibration induced by earthquakes or running of trains. 展开更多
关键词 three-dimensional seismic and vibration isolator vertical vibration isolation horizontal seismic isolation engineering application
下载PDF
Dynamic Analysis and Decoupling Control of Octo-pneumatic Actuator Vibration Isolation Platform 被引量:3
10
作者 WANG Xiaolei YANG QinNun ZHENG Gangtie 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2009年第1期116-123,共8页
Control of a six-DOF vibration isolation platform is generally difficult which is due to the strong coupling among its input and output channels. The dynamic behavior and decoupling approach of a six-DOF vibration iso... Control of a six-DOF vibration isolation platform is generally difficult which is due to the strong coupling among its input and output channels. The dynamic behavior and decoupling approach of a six-DOF vibration isolation platform with eight pneumatic actuators are investigated. Owing to the symmetric configuration design of the platform, the coupling among different channels is greatly weakened. When the payload's principal axes of inertia parallel to the platform's axes of symmetry and the payload's center of mass is at the extension line of the platform's central axis, the motion can be decomposed into two independent single-input single-output channels and two independent two-input two-output subsystems. The second-order subsystems are decoupled further with the simultaneous matrix diagonalization. Thus a decoupling control strategy is developed. Effectiveness of the decoupling approach is verified through experiments of the platform, and the experimental results show that vibrations of the platform are attenuated obviously owing to the active control. 展开更多
关键词 decoupling control vibration isolation eight actuators pneumatic actuator
下载PDF
PERFORMANCE OF ULTRA-LOW FREQUENCY PASSIVE VERTICAL VIBRATION ISOLATION SYSTEM WITH REVERSE PENDULUM 被引量:2
11
作者 Zhao Pengfei Huang Yuying +1 位作者 Tang Mengxi Sun Shijun 《Acta Mechanica Solida Sinica》 SCIE EI 2002年第1期45-48,共4页
A novel long period passive vertical vibration isolatorconstructed by mounting reverse pendu- lums on two pairs of torsionsprings is presented. By theoretical analysis and numericalcalculation, it is shown that the is... A novel long period passive vertical vibration isolatorconstructed by mounting reverse pendu- lums on two pairs of torsionsprings is presented. By theoretical analysis and numericalcalculation, it is shown that the isolator can achieve much longerresonant period due to gravitational positive feedback and is smallerin size than the current torsion spring isolators with the samegeometric parameters. 展开更多
关键词 vertical vibration isolation torsion spring reverse pendulum resonantperiod
下载PDF
Barrier Vibration Isolation to Work-Place Vibration and Its Influence on Uneven Subsidence of Pillar Foundation 被引量:2
12
作者 Huang Ju-hua Xiao Xiang-zhi +3 位作者 Dong Xiang-huai Fu Ming-fu He Cheng-hong Yang Guo-tai 《Wuhan University Journal of Natural Sciences》 CAS 2002年第4期445-450,共6页
Aiming at practice, the wave propagation in soil has been comprehensively studied on the basis of FEM analyzing model being established. An investigation has also been performed on how to solve the problems of simulat... Aiming at practice, the wave propagation in soil has been comprehensively studied on the basis of FEM analyzing model being established. An investigation has also been performed on how to solve the problems of simulating transient vibration in actual foundation with FEM, and the result of calculating to the real transient vibration of actual foundation with FEM software ANSYS agrees with that of measuring. The vibration variation in the ground and the uneven subsidence of the factory houses’ pillars, with and without barrier vibration isolation, are calculated by employing FEM. The results show that proper barrier isolation can diminish the ground vibration displacement but likely to magnify the dynamic stress and vibration frequency within a certain region, which would aggravate the uneven subsidence of the factory house pillars. 展开更多
关键词 FEM vibration isolation by barrier pillar foundation subsidence
下载PDF
EQUIVALENT EXCITATION METHOD FOR VIBRATION ISOLATION DESIGN:THEORETICAL ANALYSIS AND EXPERIMENTAL RESULTS 被引量:1
13
作者 HuoRui ShiYin 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2005年第2期246-250,共5页
In view of difficulties concerned with direct measurement of excitationsinside source equipments and their significant influence on vibration isolation effectiveness, adynamical model, for vibration isolation of a rig... In view of difficulties concerned with direct measurement of excitationsinside source equipments and their significant influence on vibration isolation effectiveness, adynamical model, for vibration isolation of a rigid machine with six-degree-of-freedom mounted on aflexible foundation through multiple mounts, is analyzed, in which the complicated and multipledisturbances inside the machine are described as an equivalent excitation spectrum. And a method forthe estimation of the equivalent excitation spectrum according to system dynamic responses isdiscussed for the quantitative prediction of isolation effectiveness. Both theoretical analysis andexperimental results are demonstrated. Further work shows the quantitative prediction of transmittedpower flow in a flexible vibration isolation experiment system using the proposed equivalentexcitation spectrum method, by comparison with its testing results. 展开更多
关键词 vibration isolation Excitation spectrum Effectiveness estimation
下载PDF
Research on linear/nonlinear viscous damping and hysteretic damping in nonlinear vibration isolation systems 被引量:1
14
作者 Zhong ZHANG Muqing NIU +1 位作者 Kai YUAN Yewei ZHANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2020年第7期983-998,共16页
A nonlinear vibration isolation system is promising to provide a high-efficient broadband isolation performance.In this paper,a generalized vibration isolation system is established with nonlinear stiffness,nonlinear ... A nonlinear vibration isolation system is promising to provide a high-efficient broadband isolation performance.In this paper,a generalized vibration isolation system is established with nonlinear stiffness,nonlinear viscous damping,and Bouc-Wen(BW)hysteretic damping.An approximate analytical analysis is performed based on a harmonic balance method(HBM)and an alternating frequency/time(AFT)domain technique.To evaluate the damping effect,a generalized equivalent damping ratio is defined with the stiffness-varying characteristics.A comprehensive comparison of different kinds of damping is made through numerical simulations.It is found that the damping ratio of the linear damping is related to the stiffness-varying characteristics while the damping ratios of two kinds of nonlinear damping are related to the responding amplitudes.The linear damping,hysteretic damping,and nonlinear viscous damping are suitable for the small-amplitude,medium-amplitude,and large-amplitude conditions,respectively.The hysteretic damping has an extra advantage of broadband isolation. 展开更多
关键词 vibration isolation nonlinear damping Bouc-Wen(BW)model harmonic balance method(HBM)
下载PDF
Design and Verification of High Attenuation Vibration Isolation Damper in Remote Sensing Satellite Transport 被引量:1
15
作者 Hao Fu Wei Zhang +1 位作者 Junliang Liu Shangjie Pan 《Journal of Harbin Institute of Technology(New Series)》 CAS 2021年第6期63-71,共9页
To solve the safe horizontal transportation by rail&road of remote sensing satellite problem in the process of unpredictable dynamic load,a high attenuation vibration isolation damper(hereinafter referred to as vi... To solve the safe horizontal transportation by rail&road of remote sensing satellite problem in the process of unpredictable dynamic load,a high attenuation vibration isolation damper(hereinafter referred to as vibration isolation damper)was developed.By simulation analysis and transportation test using satellite structural model and engineering prototype,validity and reliability of the vibration isolation damper was verified,which can meet the requirements of vibration and shock from various transportation conditions. 展开更多
关键词 satellite structural model high attenuation vibration isolation damper dynamic analysis
下载PDF
Bandgaps and vibration isolation of local resonance sandwich-like plate with simply supported overhanging beam
16
作者 Chenxu QIANG Yuxin HAO +3 位作者 Wei ZHANG Jinqiang LI Shaowu YANG Yuteng CAO 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2021年第11期1555-1570,共16页
The concept of local resonance phononic crystals proposed in recent years provides a new chance for theoretical and technical breakthroughs in the structural vibration reduction.In this paper,a novel sandwich-like pla... The concept of local resonance phononic crystals proposed in recent years provides a new chance for theoretical and technical breakthroughs in the structural vibration reduction.In this paper,a novel sandwich-like plate model with local resonator to acquire specific low-frequency bandgaps is proposed.The core layer of the present local resonator is composed by the simply supported overhanging beam,linear spring and mass block,and well connected with the upper and lower surface panels.The simply supported overhanging beam is free at right end,and an additional linear spring is added at the left end.The wave equation is established based on the Hamilton principle,and the bending wave bandgap is further obtained.The theoretical results are verified by the COMSOL finite element software.The bandgaps and vibration characteristics of the local resonance sandwich-like plate are studied in detail.The factors which could have effects on the bandgap characteristics,such as the structural damping,mass of vibrator,position of vibrator,bending stiffness of the beam,and the boundary conditions of the sandwich-like plates,are analyzed.The result shows that the stopband is determined by the natural frequency of the resonator,the mass ratio of the resonator,and the surface panel.It shows that the width of bandgap is greatly affected by the damping ratio of the resonator.Finally,it can also be found that the boundary conditions can affect the isolation efficiency. 展开更多
关键词 local resonance sandwich-like plate elastic wave bandgap vibration isolation
下载PDF
Whole-spacecraft hybrid vibration isolation based on piezoelectric stacks and viscoelastic material
17
作者 李明明 方勃 +1 位作者 谭立军 黄文虎 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2011年第5期1-6,共6页
In order to improve the performance of whole-spacecraft vibration isolation systems,choosing piezoelectric stacks and viscoelastic material as the active and passive vibration isolation components,an innovative whole-... In order to improve the performance of whole-spacecraft vibration isolation systems,choosing piezoelectric stacks and viscoelastic material as the active and passive vibration isolation components,an innovative whole-spacecraft hybrid vibration isolation system (WSHVIS) is designed and studied.The finite element method is used to establish the dynamic model of WSHVIS and analyze its frequency response characteristic.According to the analysis results,eigensystem realization algorithm is applied to obtain the minimum-order state-space model of WSHVIS,which is used to design controller.On this basis,off-line simulation and on-line realization for the WSHVIS is performed.The simulation and experimental results showed that WSHVIS can effectively reduce the vibration loads transmitted from launch vehicle to spacecraft.Compared with passive vibration isolation system,the hybrid vibration isolation system has a significant inhibitory effect on the low-frequency vibration components,and can greatly increase the safety and reliability of spacecraft. 展开更多
关键词 whole-spacecraft hybrid vibration isolation eigensystem realization algorithm finite element method piezoelectric stack actuator
下载PDF
Research on the Pressure Regulator Effect on a Pneumatic Vibration Isolation System
18
作者 Yan Shi Shaofeng Xu +2 位作者 Zhibo Sun Yulong Nie Yixuan Wang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2022年第6期275-285,共11页
The pneumatic vibration isolator(PVI)plays an increasingly important role in precision manufacturing.In this paper,aiming to detect the performance of the pressure regulator in the PVI system,a PVI testing system with... The pneumatic vibration isolator(PVI)plays an increasingly important role in precision manufacturing.In this paper,aiming to detect the performance of the pressure regulator in the PVI system,a PVI testing system with a pressure regulator is designed and developed.Firstly,the structure of the pneumatic spring is presented and analyzed,and the nonlinear stiffness is obtained based on the ideal gas model and material mechanics.Then,according to the working principle and continuity equations of ideal airflow,a dynamic model of the PVI system with a pressure regulator is established.Through the simulation analysis,the vibration isolation performance is improved with the efficient and precise pressure regulator.The average values of both the vibration velocity and transmission rate decrease when the vibration is set to 4,10,20 and 40 Hz,respectively.The experiments demonstrate the reliability and effectiveness of the pressure regulator.This achievement will become an important basis for future research concerning precision manufacturing. 展开更多
关键词 Pneumatic vibration isolators Pressure regulator Transmission rate Rubber stiffness
下载PDF
Adjustable indentation and vibration isolation performances of nacre-like metamaterial
19
作者 Shushan Zhang Peng Jiang +5 位作者 Jixiang Qi Ganchao Chen Yonghuan Wang Ran Tao Zhaoyue Chen Ying Li 《International Journal of Smart and Nano Materials》 SCIE EI 2023年第3期303-320,共18页
Along with the living environment,organisms have evolved structures that adapt to specific environments and have better mechanical properties.Bioinspired materials learn from nature and improve their mechanical proper... Along with the living environment,organisms have evolved structures that adapt to specific environments and have better mechanical properties.Bioinspired materials learn from nature and improve their mechanical properties by imitating the structure of living organisms.Based on the 4D printed shape memory polymer and the bioinspired design method,this research proposes a soft and hard phase hybrid bioinspired metamaterial with shape memory effect and programmable mechanical properties.Compared with traditional nacre-like materials,bioinspired materials have adjustable characteristics of mechanical properties,impact resistance,and low-frequency vibration isolation.First,based on the constitutive relation of SMP(Shape memory polymer)material and its numerical simu-lation,an intelligent bioinspired metamaterial is designed.Subsequently,the mechanical properties and vibration isola-tion behavior and adjustability performance of multi-scale bioinspired metamaterials are explained by experiments.Finally,the adjustable functional mechanism of the deforma-tion and vibration isolation of the bioinspired metamaterial is described.The research of these bioinspired metamaterials has broad application prospects in the fields of impact protection and low-frequency vibration absorption. 展开更多
关键词 Nacre-like metamaterial 4D printed Indentation properties vibration isolation Shape memory effect
原文传递
Multistage oscillators for ultra-low frequency vibration isolation and energy harvesting 被引量:1
20
作者 YANG Tao ZHANG YongQi ZHOU ShengXi 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2022年第3期631-645,共15页
Limited by the mass,stiffness,barrier height and natural frequency of the oscillator,the existing structure or mechanism is still difficult to achieve vibration suppression and effective utilization under ultra-low fr... Limited by the mass,stiffness,barrier height and natural frequency of the oscillator,the existing structure or mechanism is still difficult to achieve vibration suppression and effective utilization under ultra-low frequency excitation.In particular,it is difficult to break through the technical bottleneck of the integration and intelligence of vibration isolation and energy harvesting(VIEH).The introduction of nonlinearity is usually used to solve the problem of ultra-low frequency,and the integration problem can be overcome through electromechanical coupling.Therefore,the purpose of this article is to reveal and deeply explore the geometric nonlinearity and electromechanical coupling of multistage oscillators for ultra-low frequency VIEH.This kind of multifunctional oscillators can be realized by combining mechanical multistage coupling and electromechanical conversion technologies.The experimental results confirm the development of multistage theory,and the results show that,especially in the case of multicoupling structures,the multistage oscillators with high-order quasi-zero stiffness can effectively reduce the initial frequencies of vibration isolation and the frequencies corresponding to the maximum output power.The theoretical and experimental results in this paper show that the multistage oscillators are suitable for VIEH of ultra-low frequency sources. 展开更多
关键词 MULTISTAGE geometric nonlinearity vibration isolation energy harvesting
原文传递
上一页 1 2 4 下一页 到第
使用帮助 返回顶部