期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Method of non-stationary random vibration reliability of hydro-turbine generator unit
1
作者 Zhaojun Li Fuxiu Liu +2 位作者 Ganwei Cai Jiang Ding Jiaquan Chen 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2024年第9期98-115,共18页
The hydraulic excitation acting on a hydro-turbine generator unit exhibits obvious non-stationary characteristics.In order to account for these characteristics,this study focuses on the non-stationary random vibration... The hydraulic excitation acting on a hydro-turbine generator unit exhibits obvious non-stationary characteristics.In order to account for these characteristics,this study focuses on the non-stationary random vibration reliability of the hydro-turbine generator unit.Firstly,the non-stationary characteristics of the hydraulic excitation are analyzed,and a mathematical ex-pression is constructed using the virtual excitation method.Secondly,a dynamic model of the unit is established to demonstrate the non-stationary random vibration characteristics under hydraulic excitation.Thirdly,an active learning non-stationary vibration reliability analysis method AK-MCS-T-H is proposed combining the Kriging model,the Monte Carlo simulation(MCS)method,and the information entropy learning function H.This method reveals the influence of the non-stationary hydraulic excitation on the random vibration reliability of the hydro-turbine generator unit.Finally,an example is presented to analyze the random vibration reliability.The study shows that the AK-MCS-T-H proposed in this paper can solve the problem of non-stationary random vibration reliability of the Francis hydro-turbine generator unit more effectively. 展开更多
关键词 Hydro-turbine generator unit Hydraulic excitation Non-stationarity vibration reliability Active learning
原文传递
Impact coefficient and reliability of mid-span continuous beam bridge under action of extra heavy vehicle with low speed 被引量:11
2
作者 刘波 王有志 +1 位作者 胡朋 袁泉 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第4期1510-1520,共11页
To analyze the dynamic response and reliability of a continuous beam bridge under the action of an extra heavy vehicle, a vehicle–bridge coupled vibration model was established based on the virtual work principle and... To analyze the dynamic response and reliability of a continuous beam bridge under the action of an extra heavy vehicle, a vehicle–bridge coupled vibration model was established based on the virtual work principle and vehicle–bridge displacement compatibility equation, which can accurately simulate the dynamic characteristics of the vehicle and bridge. Results show that deck roughness has an important function in the effect of the vehicle on the bridge. When an extra heavy vehicle passes through the continuous beam bridge at a low speed of 5 km/h, the impact coefficient reaches a high value, which should not be disregarded in bridge safety assessments. Considering that no specific law exists between the impact coefficient and vehicle speed, vehicle speed should not be unduly limited and deck roughness repairing should be paid considerable attention. Deck roughness has a significant influence on the reliability index, which decreases as deck roughness increases. For the continuous beam bridge in this work, the reliability index of each control section is greater than the minimum reliability index. No reinforcement measures are required for over-sized transport. 展开更多
关键词 continuous beam bridge extra heavy vehicle coupled vibration impact coefficient reliability
下载PDF
Fuzzy norm method for evaluating random vibration of airborne platform from limited PSD data 被引量:6
3
作者 Wang Zhongyu Wang Yanqing +1 位作者 Wang Qian Zhang Jianjun 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2014年第6期1442-1450,共9页
For random vibration of airborne platform, the accurate evaluation is a key indicator to ensure normal operation of airborne equipment in flight. However, only limited power spectral density(PSD) data can be obtaine... For random vibration of airborne platform, the accurate evaluation is a key indicator to ensure normal operation of airborne equipment in flight. However, only limited power spectral density(PSD) data can be obtained at the stage of flight test. Thus, those conventional evaluation methods cannot be employed when the distribution characteristics and priori information are unknown. In this paper, the fuzzy norm method(FNM) is proposed which combines the advantages of fuzzy theory and norm theory. The proposed method can deeply dig system information from limited data, which probability distribution is not taken into account. Firstly, the FNM is employed to evaluate variable interval and expanded uncertainty from limited PSD data, and the performance of FNM is demonstrated by confidence level, reliability and computing accuracy of expanded uncertainty. In addition, the optimal fuzzy parameters are discussed to meet the requirements of aviation standards and metrological practice. Finally, computer simulation is used to prove the adaptability of FNM. Compared with statistical methods, FNM has superiority for evaluating expanded uncertainty from limited data. The results show that the reliability of calculation and evaluation is superior to 95%. 展开更多
关键词 Expanded uncertainty Fuzzy norm method Limited PSD data Random vibration reliability Variable interval
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部