This paper presents a new method for solving the vibration of arbitrarily shaped membranes with ela.stical supports at points. The reaction forces of elastical supports at points are regarded as unknown external force...This paper presents a new method for solving the vibration of arbitrarily shaped membranes with ela.stical supports at points. The reaction forces of elastical supports at points are regarded as unknown external forces acting on the membranes. The exact solution of the equation of motion is given which includes terms representing the unknown reaction forces. The frequency equation is derived by the use of the linear relationship of the displacements with the reaction forces of elastical supports at points. Finally the calculating formulae of the frequency equation of circular membranes are analytically performed as examples and the inherent frequencies of circular membranes with symmetric elastical supports at two points are numerically calculated.展开更多
A hybrid control approach is proposed to achieve the desired performance. Firstly a robust input shaper is designed to reduce the transient vibration and residual vibration of the container efficiently. Then a simple ...A hybrid control approach is proposed to achieve the desired performance. Firstly a robust input shaper is designed to reduce the transient vibration and residual vibration of the container efficiently. Then a simple fuzzy logic controller is designed to eliminate the residual vibration completely in order to guarantee the positioning precision. Such a hybrid approach is simple in structure and readily realizable. Simulation results verify the fine performance of this hybrid control approach. It can achieve perfect elimination of residual vibration and concise positioning of the container load, and it is robust to parameter variations (mainly for cable length) and external disturbances.展开更多
Many skyscrapers have installed wind turbine systems to use new renewable energy. In particular, building an integrated wind power generation system by installing a wind power generator inside a building is an attract...Many skyscrapers have installed wind turbine systems to use new renewable energy. In particular, building an integrated wind power generation system by installing a wind power generator inside a building is an attractive method to secure safe energy. However, most studies have dealt with the efficiency of wind turbines and the response effects of wind induced vibration; space preparation for wind turbine installations has not been sufficiently considered. This work reviewed the shapes of openings where wind turbines can be installed in skyscrapers, and the characteristics of wind induced vibration responses occurring in the building with changes in cross sectional area. Nine wind power models were constructed to carry out the experiment. According to the experimental results, wind speed varies with shape of opening in the order of C-type>S-type>R-type. Moreover, wind speed increases as the area is reduced.展开更多
Systematic physical experiments examining the packing densification of mono-sized cylindrical parti- cles subject to 3D mechanical vibration were carried out. The influence of vibration conditions such as vibration ti...Systematic physical experiments examining the packing densification of mono-sized cylindrical parti- cles subject to 3D mechanical vibration were carried out. The influence of vibration conditions such as vibration time, frequency, amplitude, vibration strength, container size, and the aspect ratio and spheric- ity of the particle on the packing density were analyzed and discussed. For each initial packing density with a certain aspect ratio, operating parameters were optimized to achieve much denser packing. The results indicate that the packing density initially increases with vibration time and then remains con- stant. The effects of vibration frequency and amplitude on the packing densification have similar trends, i.e. the packing density first increases with the vibration frequency or amplitude to a high value and then decreases; too large or small frequency or amplitude does not enhance densification. Increasing the container size can reduce container wall effects and help achieve a high packing density. Varying the particle aspect ratio and sphericity can lead to different dense random packing structures. Overall, based on results of the examined systems, the highest random packing density obtained in an infinite sized container can reach 0.73, which agrees well with corresponding numerical and analytical results in the literature.展开更多
文摘This paper presents a new method for solving the vibration of arbitrarily shaped membranes with ela.stical supports at points. The reaction forces of elastical supports at points are regarded as unknown external forces acting on the membranes. The exact solution of the equation of motion is given which includes terms representing the unknown reaction forces. The frequency equation is derived by the use of the linear relationship of the displacements with the reaction forces of elastical supports at points. Finally the calculating formulae of the frequency equation of circular membranes are analytically performed as examples and the inherent frequencies of circular membranes with symmetric elastical supports at two points are numerically calculated.
基金This project is supported by National Hi-tech Research and DevelopmentProgram of China (863 Program, No.2002AA412010).
文摘A hybrid control approach is proposed to achieve the desired performance. Firstly a robust input shaper is designed to reduce the transient vibration and residual vibration of the container efficiently. Then a simple fuzzy logic controller is designed to eliminate the residual vibration completely in order to guarantee the positioning precision. Such a hybrid approach is simple in structure and readily realizable. Simulation results verify the fine performance of this hybrid control approach. It can achieve perfect elimination of residual vibration and concise positioning of the container load, and it is robust to parameter variations (mainly for cable length) and external disturbances.
基金Project(2011-0028567)supported by the National Research Foundation of Korea
文摘Many skyscrapers have installed wind turbine systems to use new renewable energy. In particular, building an integrated wind power generation system by installing a wind power generator inside a building is an attractive method to secure safe energy. However, most studies have dealt with the efficiency of wind turbines and the response effects of wind induced vibration; space preparation for wind turbine installations has not been sufficiently considered. This work reviewed the shapes of openings where wind turbines can be installed in skyscrapers, and the characteristics of wind induced vibration responses occurring in the building with changes in cross sectional area. Nine wind power models were constructed to carry out the experiment. According to the experimental results, wind speed varies with shape of opening in the order of C-type>S-type>R-type. Moreover, wind speed increases as the area is reduced.
基金We are grateful to the financial support of National Natural Science Foundation of China (No. 51374070) and Fundamental Research Funds for the Central Universities of China (N120202001, N130102001).
文摘Systematic physical experiments examining the packing densification of mono-sized cylindrical parti- cles subject to 3D mechanical vibration were carried out. The influence of vibration conditions such as vibration time, frequency, amplitude, vibration strength, container size, and the aspect ratio and spheric- ity of the particle on the packing density were analyzed and discussed. For each initial packing density with a certain aspect ratio, operating parameters were optimized to achieve much denser packing. The results indicate that the packing density initially increases with vibration time and then remains con- stant. The effects of vibration frequency and amplitude on the packing densification have similar trends, i.e. the packing density first increases with the vibration frequency or amplitude to a high value and then decreases; too large or small frequency or amplitude does not enhance densification. Increasing the container size can reduce container wall effects and help achieve a high packing density. Varying the particle aspect ratio and sphericity can lead to different dense random packing structures. Overall, based on results of the examined systems, the highest random packing density obtained in an infinite sized container can reach 0.73, which agrees well with corresponding numerical and analytical results in the literature.