Noise and whole-body vibration measurements were made in a Viking military vehicle to determine the variation that should be expected during repeat measures,the effect of speed(up to 60 km/h in 5 km/h increments),and ...Noise and whole-body vibration measurements were made in a Viking military vehicle to determine the variation that should be expected during repeat measures,the effect of speed(up to 60 km/h in 5 km/h increments),and during travel over different types of terrain(comprising concrete road,gravel track and rough cross-country).Measurements were made at various crew positions(including the driver and commander)in both the front and the rear cabs in the vehicles.Three translational axes of vibration were measured in each seat.Two speeds were investigated over road(35 km/h and 55e60 km/h)and gravel(20 km/h and 35 km/h)surfaces.The effect of varying speed of the vehicle on the measured noise and vibration magnitudes was also investigated.The highest sound pressure level(LAeq)of 104 dB(A)was measured at the commander’s standing position during travel over concrete road at 55 km/h.Higher noise levels occurred for a standing commander compared with when sitting on the seat.A maximum single axis frequency-weighted vibration magnitude of 1.0 m/s^(2) r.m.s.was measured on the driver’s seat during travel over track at 35 km/h.Higher vibration magnitudes occurred during travel over track compared with travel over road.Both noise and vibration exposure of crew within the Viking vehicle increased with increasing speed of the vehicle.展开更多
A frequency equation for the vibration of an engine seating and an equation for pressure under the bottom of the engine are obtained.The present approach extends the so called Muravskii model possessing high practical...A frequency equation for the vibration of an engine seating and an equation for pressure under the bottom of the engine are obtained.The present approach extends the so called Muravskii model possessing high practical accuracy of the ground modeling with its simultaneous simplicity.展开更多
文摘Noise and whole-body vibration measurements were made in a Viking military vehicle to determine the variation that should be expected during repeat measures,the effect of speed(up to 60 km/h in 5 km/h increments),and during travel over different types of terrain(comprising concrete road,gravel track and rough cross-country).Measurements were made at various crew positions(including the driver and commander)in both the front and the rear cabs in the vehicles.Three translational axes of vibration were measured in each seat.Two speeds were investigated over road(35 km/h and 55e60 km/h)and gravel(20 km/h and 35 km/h)surfaces.The effect of varying speed of the vehicle on the measured noise and vibration magnitudes was also investigated.The highest sound pressure level(LAeq)of 104 dB(A)was measured at the commander’s standing position during travel over concrete road at 55 km/h.Higher noise levels occurred for a standing commander compared with when sitting on the seat.A maximum single axis frequency-weighted vibration magnitude of 1.0 m/s^(2) r.m.s.was measured on the driver’s seat during travel over track at 35 km/h.Higher vibration magnitudes occurred during travel over track compared with travel over road.Both noise and vibration exposure of crew within the Viking vehicle increased with increasing speed of the vehicle.
文摘A frequency equation for the vibration of an engine seating and an equation for pressure under the bottom of the engine are obtained.The present approach extends the so called Muravskii model possessing high practical accuracy of the ground modeling with its simultaneous simplicity.