The electromagnetic vibration noise in axial flux motors was meticulously examined.In this study,24-slot/10-pole and 12-slot/10-pole axial flux motors were chosen as the subjects of research.The spatial characteristic...The electromagnetic vibration noise in axial flux motors was meticulously examined.In this study,24-slot/10-pole and 12-slot/10-pole axial flux motors were chosen as the subjects of research.The spatial characteristics of the axial electromagnetic force were derived analytically and confirmed via two-dimensional Fourier decomposition.The finite-element method was used to simulate the low-order axial modes of both motors.Furthermore,a modal experiment on the stator of a 24-slot/10-pole axial flux motor was conducted to validate the simulation’s accuracy.By integrating the electromagnetic and structural models,a comprehensive multi-physical field model was developed to calculate the vibration noise of the axial flux motor.The precision of this model was subsequently corroborated with noise experiments.The findings from this study aim to offer insights into identifying the sources of vibration noise in axial flux motors.展开更多
An optimized structure to weaken the vibration and noise of a new asymmetric permanent magnet-assisted synchronous reluctance motor(PMaSynRM)is proposed.The new asymmetric PMaSynRM has the advantages of a low torque r...An optimized structure to weaken the vibration and noise of a new asymmetric permanent magnet-assisted synchronous reluctance motor(PMaSynRM)is proposed.The new asymmetric PMaSynRM has the advantages of a low torque ripple and high fault tolerance.However,the asymmetric structure generates an unbalanced magnetic force(UMF),which results in vibration and noise problems.In this study,the vibration and noise of the motor are analyzed and optimized.First,the radial pressure is analyzed,and an optimized structure is proposed.The electromagnetic performance of the motor before and after optimization is analyzed using the finite element method.Second,a three-dimensional model is established,and modal analysis is conducted considering the orthotropy of the stator and effective windings.Finally,the vibration and noise are simulated and analyzed,and the validity of the analysis results is verified experimentally.The analysis results indicate that the optimized motor realizes a reduction in the motor vibration and noise.展开更多
基金Supported by the Key Project of the China National Natural Science Foundation under Projects 51637001Open Fund for National Engineering Laboratory of Energy-Saving Motor&Control Technology,Anhui University(KFKT202101)Scientific Research Project Supported by Education Department of Anhui Province(KJ2021A0014).
文摘The electromagnetic vibration noise in axial flux motors was meticulously examined.In this study,24-slot/10-pole and 12-slot/10-pole axial flux motors were chosen as the subjects of research.The spatial characteristics of the axial electromagnetic force were derived analytically and confirmed via two-dimensional Fourier decomposition.The finite-element method was used to simulate the low-order axial modes of both motors.Furthermore,a modal experiment on the stator of a 24-slot/10-pole axial flux motor was conducted to validate the simulation’s accuracy.By integrating the electromagnetic and structural models,a comprehensive multi-physical field model was developed to calculate the vibration noise of the axial flux motor.The precision of this model was subsequently corroborated with noise experiments.The findings from this study aim to offer insights into identifying the sources of vibration noise in axial flux motors.
文摘An optimized structure to weaken the vibration and noise of a new asymmetric permanent magnet-assisted synchronous reluctance motor(PMaSynRM)is proposed.The new asymmetric PMaSynRM has the advantages of a low torque ripple and high fault tolerance.However,the asymmetric structure generates an unbalanced magnetic force(UMF),which results in vibration and noise problems.In this study,the vibration and noise of the motor are analyzed and optimized.First,the radial pressure is analyzed,and an optimized structure is proposed.The electromagnetic performance of the motor before and after optimization is analyzed using the finite element method.Second,a three-dimensional model is established,and modal analysis is conducted considering the orthotropy of the stator and effective windings.Finally,the vibration and noise are simulated and analyzed,and the validity of the analysis results is verified experimentally.The analysis results indicate that the optimized motor realizes a reduction in the motor vibration and noise.