期刊文献+
共找到67篇文章
< 1 2 4 >
每页显示 20 50 100
Simulation and Traffic Safety Assessment of Heavy-Haul Railway Train-Bridge Coupling System under Earthquake Action
1
作者 Liangwei Jiang Wei Zhang +3 位作者 Hongyin Yang Xiucheng Zhang Jinghan Wu Zhangjun Liu 《Structural Durability & Health Monitoring》 EI 2024年第6期835-851,共17页
Aiming at the problem that it is difficult to obtain the explicit expression of the structural matrix in the traditional train-bridge coupling vibration analysis,a combined simulation system of train-bridge coupling s... Aiming at the problem that it is difficult to obtain the explicit expression of the structural matrix in the traditional train-bridge coupling vibration analysis,a combined simulation system of train-bridge coupling system(TBCS)under earthquake(MAETB)is developed based on the cooperative work of MATLAB and ANSYS.The simulation system is used to analyze the dynamic parameters of the TBCS of a prestressed concrete continuous rigid frame bridge benchmark model of a heavy-haul railway.The influence of different driving speeds,seismic wave intensities,and traveling wave effects on the dynamic response of the TBCS under the actions of the earthquakes is discussed.The results show that the bridge displacement increase in magnitude in the lateral direction is more significant than in the vertical direction under the action of an earthquake.The traveling wave effect can significantly reduce the lateral response of the bridge,but it will significantly increase the train derailment coefficient.When the earthquake intensity exceeds 0.2 g,the partial derailment coefficient of the train has exceeded the limit value of the specification. 展开更多
关键词 Train-bridge coupling vibration analysis dynamic response earthquake action traveling wave effect
下载PDF
Dynamic Response Impact of Vehicle Braking on Simply Supported Beam Bridges with Corrugated Steel Webs Based on Vehicle-Bridge Coupled Vibration Analysis
2
作者 Yan Wang Siwen Li Na Wei 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第6期3467-3493,共27页
A novel approach for analyzing coupled vibrations between vehicles and bridges is presented,taking into account spatiotemporal effects and mechanical phenomena resulting fromvehicle braking.Efficient modeling and solu... A novel approach for analyzing coupled vibrations between vehicles and bridges is presented,taking into account spatiotemporal effects and mechanical phenomena resulting fromvehicle braking.Efficient modeling and solution of bridge vibrations induced by vehicle deceleration are realized using this method.The method’s validity and reliability are substantiated through numerical examples.A simply supported beam bridge with a corrugated steel web is taken as an example and the effects of parameters such as the initial vehicle speed,braking acceleration,braking location,and road surface roughness on the mid-span displacement and impact factor of the bridge are analyzed.The results show that vehicle braking significantly amplifies mid-span displacement and impact factor responses in comparison to uniform vehicular motion across the bridge.Notably,the influence of wheelto-bridge friction forces is of particular significance and cannot be overlooked.When the vehicle initiates braking near the middle of the span,both the mid-span displacement and impact factor of the bridge exhibit substantial increases,further escalating with higher braking acceleration.Under favorable road surface conditions,the midspan displacement and the impact factor during vehicle braking may exceed the design values stipulated by codes.It is important to note that road surface roughness exerts a more pronounced effect on the impact factor of the bridge in comparison to the effects of vehicle braking. 展开更多
关键词 Corrugated steel web girder bridges simply supported beam bridges vehicle-bridge coupled vibration BRAKING impact factor
下载PDF
Coupling vibration analysis of high-speed maglev train-viaduct systems with control loop failure 被引量:4
3
作者 GUO Wei CHEN Xue-yuan +7 位作者 YE Yi-tao HU Yao LUO Yi-kai SHAO Ping HUANG Ren-qiang WANG Xu-yixin GUO Zhen TAN Sui 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第8期2771-2790,共20页
The risk of failure of the control loop can occur when a high-speed maglev train runs on viaduct.Meanwhile,the failure of the levitation magnets which balances the gravity of the maglev train could cause the train col... The risk of failure of the control loop can occur when a high-speed maglev train runs on viaduct.Meanwhile,the failure of the levitation magnets which balances the gravity of the maglev train could cause the train collision with track.To study the dynamic response of the train and the viaduct when the levitation magnet control loop failure occurs,a high-speed maglev train-viaduct coupling model,which includes a maglev controller fitted by measured force-gap data and considers the actual structure of train and viaduct,is established.Then the accuracy and effectiveness of the established approach are validated by comparing the computed dynamic responses and frequencies with the measurement results.After that,the dynamic responses of maglev train and viaduct are discussed under normal operation and control loop failures,and the most disadvantageous combination of control loop failures is obtained.The results show that when a single control loop fails,it only has a great influence on the failed electromagnet,and the maglev response of adjacent electromagnets has no obvious change and no collision occurs.But there is a risk of rail collisions when the dual control loop fails. 展开更多
关键词 high-speed maglev train control loop failure coupling vibration maglev control
下载PDF
MECHANICAL-ELECTRIC COUPLING DYNAMICAL CHARACTERISTICS OF AN ULTRA-HIGH SPEED GRINDING MOTORIZED SPINDLE SYSTEM 被引量:23
4
作者 LUE Lang XIONG Wanli GAO Hang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2008年第5期34-40,共7页
On the basis of the traditional mechanical model of a grinding wheel rotor and the mechanical-electric coupling model with ideal sinusoidal supply, taking high-frequency converting current of inverter power switches i... On the basis of the traditional mechanical model of a grinding wheel rotor and the mechanical-electric coupling model with ideal sinusoidal supply, taking high-frequency converting current of inverter power switches into further consideration, a modified mechanical-electric coupling model is created. The created model consists of an inverter, a motorized spindle, a grinding wheel and grinding loads. Some typical non-stationary processes of the grinding system with two different supplies, including the starting, the speed rising and the break in grinding loads, are compared by making use of the created model. One supply is an ideal sinusoidal voltage source, the other is an inverter. The theoretical analysis of the high-order harmonic is also compared with the experimental result. The material strategy of suppressing high-order harmonic mechanical-electric coupling vibration by optimizing inverter operating parameters is proposed. 展开更多
关键词 Ultra-high speed grinding Motorized spindle Mechanical-electric coupling Vibration Suppression
下载PDF
VIBRATION ANALYSIS OF TURBINE BASED ON FLUID-STRUCTURE COUPLING 被引量:11
5
作者 LIU Demin LIU Xiaobing 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2008年第4期40-43,共4页
The vibration of a Francis turbine is analyzed with the additional quality matrix method based on fluid-structure coupling (FSC). Firstly, the vibration frequency and mode of blade and runner in air and water are ca... The vibration of a Francis turbine is analyzed with the additional quality matrix method based on fluid-structure coupling (FSC). Firstly, the vibration frequency and mode of blade and runner in air and water are calculated. Secondly, the influences to runner frequency domain by large flow, small flow and design flow working conditions are compared. Finally the influences to runner modes by centrifugal forces under three rotating speeds of 400 r/rain, 500 r/min and 600 r/rain are compared. The centrifugal force and small flow working condition have greatly influence on the vibration of small runner. With the increase of centrifugal force, the vibration frequency of the runner is sharply increased. Some order frequencies are even close to the runner natural frequency in the air. Because the low frequency vibration will severely damage the stability of the turbine, low frequency vibration of units should be avoided as soon as possible. 展开更多
关键词 Fluid-structure coupling Additional quality matrix Vibration Mode
下载PDF
RESEARCH ON SOLID-LIQUID COUPLING DYNAMICSOF PIPE CONVEYING FLUID 被引量:1
6
作者 王世忠 刘玉兰 黄文虎 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1998年第11期0-0,0-0+0-0+0,共7页
On the basis of Hamilton principle. the equation of sonlid-liquid coupling vibration of pipe conveying fluid is deduced. An asymmetrical sonlid-liquid coupling damp matrix and a symmetrical solid-liquid coupling Sti... On the basis of Hamilton principle. the equation of sonlid-liquid coupling vibration of pipe conveying fluid is deduced. An asymmetrical sonlid-liquid coupling damp matrix and a symmetrical solid-liquid coupling Stiffness matrix are obtained. Using QR method , pipe’s nature frequencies are calculated. The curves of the first four orders of natural frequency-flow velocity of pipe waw given .The influence of flowing velocity ,pressure, solid-liquid coupling damp and solid-liquid coupling stiffness on natural frequency are discussed respectively.The dynamic respondence of the pipes for stepload with different flow velocity are calculated by Newmark method .It is found that,with the flow velocity increased, the nature frequency of the pipes reduced, increased,reduced again and so on. 展开更多
关键词 finite element method pipe conveying fluid solid-fluid coupling vibration
下载PDF
Nonlinear modal coupling in a T-shaped piezoelectric resonator induced by stiffness hardening effect
7
作者 Lei LI Hanbiao LIU +1 位作者 Jianxin HAN Wenming ZHANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2022年第6期777-792,共16页
The nonlinear modal coupling in a T-shaped piezoelectric resonator,when the former two natural frequencies are away from 1:2,is studied.Experimentally sweeping up the exciting frequency shows that the horizontal beam ... The nonlinear modal coupling in a T-shaped piezoelectric resonator,when the former two natural frequencies are away from 1:2,is studied.Experimentally sweeping up the exciting frequency shows that the horizontal beam exhibits a nonlinear hardening behavior.The first primary resonance of the vertical beam,owing to modal coupling,exhibits an abrupt amplitude increase,namely the Hopf bifurcation.The frequency comb phenomenon induced by modal coupling is measured experimentally.A Duffing-Mathieu coupled model is theoretically introduced to derive the conditions of the modal coupling and frequency comb phenomenon.The results demonstrate that the modal coupling results from nonlinear stiffness hardening and is strictly dependent on the loading range and sweeping form of the driving voltage and the frequency of the piezoelectric patches. 展开更多
关键词 coupled vibration RESONATOR nonlinear dynamics BIFURCATION hardening behavior frequency comb
下载PDF
Combined resonance of low pressure cylinder-generator rotor system with bending-torsion coupling
8
作者 李军 陈予恕 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2011年第8期957-972,共16页
A nonlinear model of a low pressure cylinder-generator rotor system is presented to study sub-synchronous resonance and combined resonance. Analytical results are obtained by an averaging method. Transition sets and b... A nonlinear model of a low pressure cylinder-generator rotor system is presented to study sub-synchronous resonance and combined resonance. Analytical results are obtained by an averaging method. Transition sets and bifurcation diagrams are obtained based on the singularity theory for the two-state variable system. The bifurcation characteristics are analyzed to provide a basis for the optimal design and fault diagnosis of the rotor system. Finally, the theoretical results are verified with the numerical results. 展开更多
关键词 bending-torsion coupling vibration of rotor system sub-synchronous resonance nonlinear dynamics of rotor combined resonance of bending-torsion coupling vibration
下载PDF
COUPLING VIBRATION OF VEHICLE-BRIDGE SYSTEM
9
作者 陈炎 黄小清 马友发 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2004年第4期390-395,共6页
By applying the sinusoidal wave mode to simulate the rugged surface of bridge deck,accounting for vehicle-bridge interaction and using Euler-Bernoulli beam theory, a coupling vibration model of vehicle-bridge system w... By applying the sinusoidal wave mode to simulate the rugged surface of bridge deck,accounting for vehicle-bridge interaction and using Euler-Bernoulli beam theory, a coupling vibration model of vehicle-bridge system was developed. The model was solved by mode analyzing method and Runge-Kutta method, and the dynamic response and the resonance curve of the bridge were obtained. It is found that there are two resonance regions, one represents the main resonance while the other the minor resonance, in the resonance curve. The influence due to the rugged surface, the vibration mode of bridge, and the interaction between vehicle and bridge on vibration of the system were discussed. Numerical results show that the influence due to these parameters is so significant that the effect of roughness of the bridge deck and the mode shape of the bridge can't be ignored and the vehicle velocity should be kept away from the critical speed of the vehicle. 展开更多
关键词 coupling vibration dynamic response RESONANCE vehicle-bridge system critical speed of vehicle
下载PDF
Theoretical Study on Direction of Vibrational Transition Dipole Moment of XH Stretching Vibration in HXD
10
作者 Kaito Takahashi 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2020年第1期13-22,共10页
Experimental vibrational spectra of heavy light XH stretching vibrations of simple molecules have been analyzed using the local mode model.In addition,the bond dipole approach,which assumes that the transition dipole ... Experimental vibrational spectra of heavy light XH stretching vibrations of simple molecules have been analyzed using the local mode model.In addition,the bond dipole approach,which assumes that the transition dipole moment(TDM)of the XH stretching mode is aligned along the XH bond,has helped analyze experimental spectra.We performed theoretical calculations of the XH stretching vibrations of HOD,HND^−,HCD,HSD,HPD^−,and HSiD using local mode model and multi-dimensional normal modes.We found that consistent with previous notions,a localized 1D picture to treat the XH stretching vibration is valid even for analyzing the TDM tilt angle.In addition,while the TDM of the OH stretching fundamental transition tilted away from the OH bond in the direction away from the OD bond,that for the XH stretching fundamental of HSD,HND^−,HPD^−,HCD,and HSiD tilted away from the OH bond but toward the OD bond.This shows that bond dipole approximation may not be a good approximation for the present systems and that the heavy atom X can affect the transition dipole moment direction.The variation of the dipole moment was analyzed using the atoms-in-molecule method. 展开更多
关键词 Heavy light stretching vibration Transition dipole moment vibrational mode coupling Quantum chemistry
下载PDF
ANALYSIS OF THERMAL-ELASTIC COUPLING VIBRATION OF LARGE DEFLECTION CYLINDRICAL SHELL
11
作者 树学锋 兰姣霞 武勇忠 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2004年第9期994-1000,共7页
The governing equation and energy equations for thermal-elastic coupling vibration of cylindrical shell were developed. The Garlerkin method was used in numerical process. Some useful result can be concluded from nume... The governing equation and energy equations for thermal-elastic coupling vibration of cylindrical shell were developed. The Garlerkin method was used in numerical process. Some useful result can be concluded from numerical result. With the increase of the amplitude of temperature and coupling coefficient, the speed of vibration decaying becomes slower and the coupling effect becomes weaker. The larger the ration of length to radius and length to thickness, the faster the decaying of the vibration amplitude and the vibration frequency increase. It means the coupling effect gets stronger. The larger the coupling coefficient, the smaller the axial stress, the axial force and the bendind moment are. 展开更多
关键词 cylindrical shell thermal-elastic coupled vibration Garlerkin method
下载PDF
A comprehensive review on coupling vibrations of train-bridge systems under external excitations
12
作者 Yongle Li Huoyue Xiang +1 位作者 Zhen Wang Jin Zhu 《Railway Engineering Science》 2022年第3期383-401,共19页
In recent years,high-speed railways in China have developed very rapidly,and the number and span of the railway bridges are keeping increasing.Meanwhile,frequent extreme disasters,such as strong winds,earthquakes and ... In recent years,high-speed railways in China have developed very rapidly,and the number and span of the railway bridges are keeping increasing.Meanwhile,frequent extreme disasters,such as strong winds,earthquakes and floods,pose a significant threat to the safety of the train–bridge systems.Therefore,it is of paramount importance to evaluate the safety and comfort of trains when crossing a bridge under external excitations.In these aspects,there is abundant research but lacks a literature review.Therefore,this paper provides a comprehensive state-of-the-art review of research works on train–bridge systems under external excitations,which includes crosswinds,waves,collision loads and seismic loads.The characteristics of external excitations,the models of the train–bridge systems under external excitations,and the representative research results are summarized and analyzed.Finally,some suggestions for further research of the coupling vibration of train–bridge system under external excitations are presented. 展开更多
关键词 Train-bridge system coupling vibration CROSSWIND WAVE Collision loads Seismic load
下载PDF
CALCULATION OF FUEL SLOSHING AND ITS COUPLING VIBRATION WITH A TANK
13
作者 Sun Shuling, Liu Yuqi and Zhou AnningChinese Helicopter Research and Development Institute (CHRADI) Feng Zhenxing, Ye Biquan and Shen ChengwuWuhan University 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 1991年第3期279-286,共8页
The response of fuel-tank-sloshing to aircraft maneuver is a difficult mathematical problem to be solved. Beginning with setting up the mechanical model and the respective mathematical model, this paper uses both F.E.... The response of fuel-tank-sloshing to aircraft maneuver is a difficult mathematical problem to be solved. Beginning with setting up the mechanical model and the respective mathematical model, this paper uses both F.E. and B.E.M. to imitate the sloshing process. The paper has developed some special techniques to deal with strong nonlinear characteristics, and provided satisfactory numerical results of displacements and stress for low frequency, resonance, high frequency and fuel tank dynamic response characteristics. The program not only assures convergence and stability of the solution, but also has the function of graphic display. It is a valuable technique to deal with the strong nonlinear oscillation of fuel tank with large amplitude and moving boundary condition on free surface. 展开更多
关键词 CALCULATION OF FUEL SLOSHING AND ITS coupling VIBRATION WITH A TANK MODE ITS
下载PDF
Dynamic Characteristics of the Crankshaft System with Coupling Effect 被引量:1
14
作者 S.H. Zhang K. Jia 《Journal of Energy and Power Engineering》 2010年第5期18-26,共9页
The nonlinear dynamic model of the marine diesel crankshaft system with a propeller and 6 cranks is established, in which the variable moment of inertia of the linkage and the piston, coupling effect between torsional... The nonlinear dynamic model of the marine diesel crankshaft system with a propeller and 6 cranks is established, in which the variable moment of inertia of the linkage and the piston, coupling effect between torsional and axial vibration, the actuating force applied on the piston, the actuating torque and force applied on the propeller is included. The governing equations of the model denote a strong nonlinear and non autonomous system. By numeric simulation, the dynamic response of the system to initial displacement and initial speed, variable moment of inertia, the pressure applied on the piston by combustion gas, the torque and the axial force applied on the propeller by fluid is researched respectively. According to the research results, the variable moment of inertia and coupling effect between torsional and axial vibration are the fundamental reason for nonlinear vibration. Different actuating factors can not only result in different frequency components of the response, but make the same frequency component have different vibration amplitude. The dynamic behavior of the system is not influenced obviously by the actuating torque and force applied on the propeller. There is obvious difference in sensitivity of the dynamic response in the different direction to the same actuating factor. 展开更多
关键词 coupling effect between torsional and axial vibration nonlinear dynamic model crankshaft system dynamic response.
下载PDF
Adjacent mode resonance of a hydraulic pipe system consisting of parallel pipes coupled at middle points 被引量:2
15
作者 Xin FAN Changan ZHU +1 位作者 Xiaoye MAO Hu DING 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2023年第3期363-380,共18页
The coupling vibration of a hydraulic pipe system consisting of two pipes is studied.The pipes are installed in parallel and fixed at their ends,and are restrained by clips to one bracket at their middle points.The pi... The coupling vibration of a hydraulic pipe system consisting of two pipes is studied.The pipes are installed in parallel and fixed at their ends,and are restrained by clips to one bracket at their middle points.The pipe subjected to the basement excitation at the left end is named as the active pipe,while the pipe without excitation is called the passive pipe.The clips between the two pipes are the bridge for the vibration energy.The adjacent natural frequencies will enhance the vibration coupling.The governing equation of the coupled system is deduced by the generalized Hamilton principle,and is discretized to the modal space.The modal correction is used during the discretization.The investigation on the natural characters indicates that the adjacent natural frequencies can be adjusted by the stiffness of the two clips and bracket.The harmonic balance method(HBM)is used to study the responses in the adjacent natural frequency region.The results show that the vibration energy transmits from the active pipe to the passive pipe swimmingly via the clips together with a flexible bracket,while the locations of them are not node points.The adjacent natural frequencies may arouse wide resonance curves with two peaks for both pipes.The stiffness of the clip and bracket can release the vibration coupling.It is suggested that the stiffness of the clip on the passive pipe should be weak and the bracket should be strong enough.In this way,the vibration energy is reflected by the almost rigid bracket,and is hard to transfer to the passive pipe via a soft clip.The best choice is to set the clips at the pipe node points.The current work gives some suggestions for weakening the coupled vibration during the dynamic design of a coupled hydraulic pipe system. 展开更多
关键词 hydraulic pipe system coupling vibration adjacent mode coupling parallel pipe conveying fluid harmonic balance method(HBM)
下载PDF
Seismic response analysis of road vehicle-bridge system for continuous rigid frame bridges with high piers 被引量:10
16
作者 Li Yongle Chen Ning +1 位作者 Zhao Kai Liao Haili 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2012年第4期593-602,共10页
The objective of this study is to investigate the effects of earthquakes on road vehicle-bridge coupling vibration systems. A two-axle highway freight vehicle is treated as a 13 degree-of-freedom system composed of se... The objective of this study is to investigate the effects of earthquakes on road vehicle-bridge coupling vibration systems. A two-axle highway freight vehicle is treated as a 13 degree-of-freedom system composed of several rigid bodies, which are connected by a series of springs and dampers. The framework of the earthquake-vehicle-bridge dynamic analysis system is then established using an earthquake as the extemal excitation. The equivalent lateral contact force serves as the judgment criteria for sideslip accidents according to reliability theory. The entire process of the vehicle crossing the bridge is considered for a very high pier continuous rigid frame bridge. The response characteristics of the vehicle and the bridge are discussed in terms of various parameters such as earthquake ground motion, PGA value of the earthquake, incident angle, pier height, vehicle speed and mass. It is found that seismic excitation is the most influential factor in the responses of the vehicle-bridge system and that the safety of vehicles crossing the bridge is seriously impacted by the dual excitations of earthquake and bridge vibration. 展开更多
关键词 vehicle-bridge system coupling vibration seismic effects SAFETY dynamic response
下载PDF
Nonlinear Dynamic Characteristic Analysis of the Shaft System in Water Turbine Generator Set 被引量:11
17
作者 MA Zhenyue SONG Zhiqiang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2009年第1期124-131,共8页
A 3D finite element vibration model of water turbine generator set is constructed considering the coupling with hydropower house foundation. The method of determining guide bearing dynamic characteristic coefficients ... A 3D finite element vibration model of water turbine generator set is constructed considering the coupling with hydropower house foundation. The method of determining guide bearing dynamic characteristic coefficients according to the swing of the shaft is proposed, which can be used for studying the self-vibration characteristic and stability of the water turbine generator set. The method fully considers the complex supporting boundary and loading conditions; especially the nonlinear variation of guide bearing dynamic characteristic coefficients and the coupling effect of the whole power-house foundation. The swing and critical rotating speed of an actual generator set shaft system are calculated. The simulated results of the generator set indicate that the coupling vibration model and calculation method presented in this paper are suitable for stability analysis of the water turbine generator set. 展开更多
关键词 water turbine generator set dynamic characteristic coefficients NONLINEARITY coupling vibration critical speed
下载PDF
Effects of fundamental factors on coupled vibration of wind-rail vehicle-bridge system for long-span cable-stayed bridge 被引量:10
18
作者 张明金 李永乐 汪斌 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第5期1264-1272,共9页
In a wind-vehicle-bridge(WVB) system,there are various interactions among wind,vehicle and bridge.The mechanism for coupling vibration of wind-vehicle-bridge systems is explored to demonstrate the effects of fundament... In a wind-vehicle-bridge(WVB) system,there are various interactions among wind,vehicle and bridge.The mechanism for coupling vibration of wind-vehicle-bridge systems is explored to demonstrate the effects of fundamental factors,such as mean wind,fluctuating wind,buffeting,rail irregularities,light rail vehicle vibration and bridge stiffness.A long cable-stayed bridge which carries light rail traffic is regarded as a numerical example.Firstly,a finite element model is built for the long cable-stayed bridge.The deck can generally be idealized as three-dimensional spine beam while cables are modeled as truss elements.Vehicles are modeled as mass-spring-damper systems.Rail irregularities and wind fluctuation are simulated in time domain by spectrum representation method.Then,aerodynamic loads on vehicle and bridge deck are measured by section model wind tunnel tests.Eight vertical and torsional flutter derivatives of bridge deck are identified by weighting ensemble least-square method.Finally,dynamic responses of the WVB system are analyzed in a series of cases.The results show that the accelerations of the vehicle are excited by the fluctuating wind and the track irregularity to a great extent.The transverse forces of wheel axles mainly depend on the track irregularity.The displacements of the bridge are predominantly determined by the mean wind and restricted by its stiffness.And the accelerations of the bridge are enlarged after adding the fluctuating wind. 展开更多
关键词 wind-vehicle-bridge system coupled vibration long-span cable-stayed bridge fundamental factors
下载PDF
Coupled lateral-torsional-axial vibrations of a helical gear-rotor-bearing system 被引量:8
19
作者 Chao-Feng Li Shi-Hua Zhou +1 位作者 Jie Liu Bang-Chun Wen 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2014年第5期746-761,共16页
Considering the axial and radial loads, a math- ematical model of angular contact ball bearing is deduced with Hertz contact theory. With the coupling effects of lateral, torsional and axial vibrations taken into acco... Considering the axial and radial loads, a math- ematical model of angular contact ball bearing is deduced with Hertz contact theory. With the coupling effects of lateral, torsional and axial vibrations taken into account, a lumped-parameter nonlinear dynamic model of helical gearrotor-bearing system (HGRBS) is established to obtain the transmission system dynamic response to the changes of dif- ferent parameters. The vibration differential equations of the drive system are derived through the Lagrange equation, which considers the kinetic and potential energies, the dis- sipative function and the internal/external excitation. Based on the Runge-Kutta numerical method, the dynamics of the HGRBS is investigated, which describes vibration properties of HGRBS more comprehensively. The results show that the vibration amplitudes have obvious fluctuation, and the frequency multiplication and random frequency components become increasingly obvious with changing rotational speed and eccentricity at gear and bearing positions. Axial vibration of the HGRBS also has some fluctuations. The bearing has self-variable stiffness frequency, which should be avoided in engineering design. In addition, the bearing clearance needs little attention due to its slightly discernible effect on vibration response. It is suggested that a careful examination should be made in modelling the nonlinear dynamic behavior of a helical gear-rotor-bearing system. 展开更多
关键词 Helical gear-rotor-bearing system Coupled lateral-torsional-axial vibration Meshing frequency Nonlinear dynamics
下载PDF
Influence of vehicle-road coupled vibration on tire adhesion based on nonlinear foundation 被引量:5
20
作者 Junning ZHANG Shaopu YANG +2 位作者 Shaohua LI Yongjie LU Hu DING 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2021年第5期607-624,共18页
The influence of pavement vibration on tire adhesion is of great significance to the structure design of vehicle and pavement.The adhesion between tire and road is the key to studying vehicle dynamics,and the precise ... The influence of pavement vibration on tire adhesion is of great significance to the structure design of vehicle and pavement.The adhesion between tire and road is the key to studying vehicle dynamics,and the precise description of tire adhesion affects the accuracy of dynamic vehicle responses.However,in most models,only road roughness is considered,and the pavement vibration caused by vehicle-road interaction is ignored.In this paper,a vehicle is simplified as a spring-mass-damper oscillator,and the vehicle-pavement system is modeled as a vehicle moving along an Euler-Bernoulli beam with finite length on a nonlinear foundation.The road roughness is considered as a sine wave,and the shear stress is ignored on the pavement.According to the contact form between tire and road,the LuGre tire model is established to calculate the tire adhesion force.The Galerkin method is used to simplify the partial differential equations of beam vibration into finite ordinary differential equations.A product-to-sum formula and a Dirac delt function are used to deal with the nonlinear term caused by the nonlinear foundation,which realizes the fast and accurate calculation of super-high dimensional nonlinear ordinary differential equations.In addition,the dynamic responses between the coupled system and the traditional uncoupled system are compared with each other.The obtained results provide an important theoretical basis for research on the influence of vehicle-road coupled vibration on tire adhesion. 展开更多
关键词 vehicle system dynamics vehicle-road coupled vibration LuGre tire model Galerkin method
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部