期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
State to State Photodissociation Dynamics of Vibrationally Excited D2O in B Band
1
作者 Shan-yu Han Lin-sen Zhou Dai-qian Xie 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2015年第4期-,共7页
关键词 PHOTODISSOCIATION D2O vibrationally excited state Conical intersection Quantum dynamics
下载PDF
Crossed Molecular Beam Study of H+CH4 and H+CD4 Reactions: Vibrationally Excited CH3/CD3 Product Channels
2
作者 陈文韬 俞盛锐 +10 位作者 袁道福 谢婷 杨家岳 王思雯 罗畅 谭玉欣 缪月 张未卿 吴国荣 杨学明 王兴安 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2017年第6期609-613,I0001,共6页
We study the H+CH4/CD4-+H2/HD+CH3/CD3 reactions using the time sliced velocity map ion imaging technique. Ion images of the CH3/CD3 products were measured by the (2+1) resonance enhanced multi-photon ionization ... We study the H+CH4/CD4-+H2/HD+CH3/CD3 reactions using the time sliced velocity map ion imaging technique. Ion images of the CH3/CD3 products were measured by the (2+1) resonance enhanced multi-photon ionization (REMPI) detection method. Besides the CH3/CD3 products in the ground state, ion images of the vibrationally excited CH3/CD3 products were also observed at two collision energies of 0.72 and 1.06 eV. It is shown that the angular distribution of the products CH3/CD3 in vibrationally excited states gradually vary from backward scattering to sideways scattering as the collision energy increases. Compared to the CH3/CD3 products in the ground state, the CH3/CD3 products in vibrationally excited states tend to be more sideways scattered, indicating that larger impact parameters play a more important role in the vibrationally excited product channels. 展开更多
关键词 Velocity map ion imaging Crossed molecular beam Angular distribution vibrationally excited state
下载PDF
Quasiclassical Trajectory Study of Collisional Energy Transfer between Highly Excited C_6F_6 and N_2 ,O_2 and Ground State C_6F_6
3
作者 JianHuaZHOU ShaoKunWANG +2 位作者 ZhiJunYU HaiHuiJIANG YueShuGU 《Chinese Chemical Letters》 SCIE CAS CSCD 2003年第12期1317-1320,共4页
Quasiclassical trajectory calculation (QCT) is used frequently for studying collisional energy transfer between highly vibrationally excited molecules and bath gases. In this paper, the QCT of the energy transfer bet... Quasiclassical trajectory calculation (QCT) is used frequently for studying collisional energy transfer between highly vibrationally excited molecules and bath gases. In this paper, the QCT of the energy transfer between highly vibrationally excited C6F6 and N2 ,O2 and ground state C6F6 were performed. The results indicate that highly vibrationally excited C6F6 transferred vibrational energy to vibrational distribution of N2, O2 and ground state C6F6, so they are V-V energy transfer. Especially it is mainly V-V resonance energy transfer between excited C6F6 and ground state C6F6, excited C6F6 transfers more vibrational energy to ground state C6F6 than to N2 and O2 . The values of QCT , -〈DEvib〉of excited C6F6 are smaller than those of experiments. 展开更多
关键词 QCT calculation highly vibrationally excited state collisional energy transfer.
下载PDF
The v-v energy transfer of highly vibrationally excitedstates (Ⅱ)──Vibrational quenching of CO(v) by H_2O
4
作者 WANG Baoshan GU Yueshu +1 位作者 LI Qiang KONG Fan’ao 《Chinese Science Bulletin》 SCIE CAS 1998年第19期1621-1625,共5页
The vibrational energy transfer from highly vibrationally excited CO to H 2O molecules is studied by time-resolved Fourier transform infrared emission spectroscopy (TR FTIR). Following the 193 nm laser photolysis of C... The vibrational energy transfer from highly vibrationally excited CO to H 2O molecules is studied by time-resolved Fourier transform infrared emission spectroscopy (TR FTIR). Following the 193 nm laser photolysis of CHBr 3 and O 2 the secondary reactions generate CO(v). The infrared emission of CO(v→v-1) is detected by TR FTIR. The excitation of H 2O molecules is not observed. By the method of the spectral simulation and the differential technique, 8 rate constants for CO(v)/H 2O system are obtained: (1.7±0.1), (3.4±0.2), (6.2±0.4), (8.0±1.0), (9.0±2.0), (12±3), (16±4) and (18±7) (10 -13cm 3·molecule -1·s -1). At least two reasons lead to the efficient energy transfer. One is the contributions of the rotational energy to the vibational energy defect and the other is the result of the complex collision. With the SSH and ab initio calculations, the quenching mechanism of CO(v) by H 2O is suggested. 展开更多
关键词 time-resolved IR spectra highly vibrationally excited states vibrational energy transfer.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部